forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
201 lines (173 loc) · 7.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fork of a generic ResNet to incorporate additional cosmological features."""
from typing import Mapping, Optional, Sequence, Text
import sonnet.v2 as snt
import tensorflow.compat.v2 as tf
class ResNet(snt.Module):
"""ResNet model."""
def __init__(self,
n_repeats: int,
blocks_per_group_list: Sequence[int],
num_classes: int,
bn_config: Optional[Mapping[Text, float]] = None,
resnet_v2: bool = False,
channels_per_group_list: Sequence[int] = (256, 512, 1024, 2048),
use_additional_features: bool = False,
additional_features_mode: Optional[Text] = "per_block",
name: Optional[Text] = None):
"""Constructs a ResNet model.
Args:
n_repeats: The batch dimension for the input is expected to have the form
`B = b * n_repeats`. After the conv stack, the logits for the
`n_repeats` replicas are reduced, leading to an output batch dimension
of `b`.
blocks_per_group_list: A sequence of length 4 that indicates the number of
blocks created in each group.
num_classes: The number of classes to classify the inputs into.
bn_config: A dictionary of two elements, `decay_rate` and `eps` to be
passed on to the `BatchNorm` layers. By default the `decay_rate` is
`0.9` and `eps` is `1e-5`.
resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to
False.
channels_per_group_list: A sequence of length 4 that indicates the number
of channels used for each block in each group.
use_additional_features: If true, additional vector features will be
concatenated to the residual stack before logits are computed.
additional_features_mode: Mode for processing additional features.
Supported modes: 'mlp' and 'per_block'.
name: Name of the module.
"""
super(ResNet, self).__init__(name=name)
self._n_repeats = n_repeats
if bn_config is None:
bn_config = {"decay_rate": 0.9, "eps": 1e-5}
self._bn_config = bn_config
self._resnet_v2 = resnet_v2
# Number of blocks in each group for ResNet.
if len(blocks_per_group_list) != 4:
raise ValueError(
"`blocks_per_group_list` must be of length 4 not {}".format(
len(blocks_per_group_list)))
self._blocks_per_group_list = blocks_per_group_list
# Number of channels in each group for ResNet.
if len(channels_per_group_list) != 4:
raise ValueError(
"`channels_per_group_list` must be of length 4 not {}".format(
len(channels_per_group_list)))
self._channels_per_group_list = channels_per_group_list
self._use_additional_features = use_additional_features
self._additional_features_mode = additional_features_mode
self._initial_conv = snt.Conv2D(
output_channels=64,
kernel_shape=7,
stride=2,
with_bias=False,
padding="SAME",
name="initial_conv")
if not self._resnet_v2:
self._initial_batchnorm = snt.BatchNorm(
create_scale=True,
create_offset=True,
name="initial_batchnorm",
**bn_config)
self._block_groups = []
strides = [1, 2, 2, 2]
for i in range(4):
self._block_groups.append(
snt.nets.resnet.BlockGroup(
channels=self._channels_per_group_list[i],
num_blocks=self._blocks_per_group_list[i],
stride=strides[i],
bn_config=bn_config,
resnet_v2=resnet_v2,
name="block_group_%d" % (i)))
if self._resnet_v2:
self._final_batchnorm = snt.BatchNorm(
create_scale=True,
create_offset=True,
name="final_batchnorm",
**bn_config)
self._logits = snt.Linear(
output_size=num_classes,
w_init=snt.initializers.VarianceScaling(scale=2.0), name="logits")
if self._use_additional_features:
self._embedding = LinearBNReLU(output_size=16, name="embedding",
**bn_config)
if self._additional_features_mode == "mlp":
self._feature_repr = LinearBNReLU(
output_size=self._channels_per_group_list[-1], name="features_repr",
**bn_config)
elif self._additional_features_mode == "per_block":
self._feature_repr = []
for i, ch in enumerate(self._channels_per_group_list):
self._feature_repr.append(
LinearBNReLU(output_size=ch, name=f"features_{i}", **bn_config))
else:
raise ValueError(f"Unsupported addiitonal features mode: "
f"{additional_features_mode}")
def __call__(self, inputs, features, is_training):
net = inputs
net = self._initial_conv(net)
if not self._resnet_v2:
net = self._initial_batchnorm(net, is_training=is_training)
net = tf.nn.relu(net)
net = tf.nn.max_pool2d(
net, ksize=3, strides=2, padding="SAME", name="initial_max_pool")
if self._use_additional_features:
assert features is not None
features = self._embedding(features, is_training=is_training)
for i, block_group in enumerate(self._block_groups):
net = block_group(net, is_training)
if (self._use_additional_features and
self._additional_features_mode == "per_block"):
features_i = self._feature_repr[i](features, is_training=is_training)
# support for n_repeats > 1
features_i = tf.repeat(features_i, self._n_repeats, axis=0)
net += features_i[:, None, None, :] # expand to spacial resolution
if self._resnet_v2:
net = self._final_batchnorm(net, is_training=is_training)
net = tf.nn.relu(net)
net = tf.reduce_mean(net, axis=[1, 2], name="final_avg_pool")
# Re-split the batch dimension
net = tf.reshape(net, [-1, self._n_repeats] + net.shape.as_list()[1:])
# Average over the various repeats of the input (e.g. those could have
# corresponded to different crops).
net = tf.reduce_mean(net, axis=1)
if (self._use_additional_features and
self._additional_features_mode == "mlp"):
net += self._feature_repr(features, is_training=is_training)
return self._logits(net)
class LinearBNReLU(snt.Module):
"""Wrapper class for Linear layer with Batch Norm and ReLU activation."""
def __init__(self, output_size=64,
w_init=snt.initializers.VarianceScaling(scale=2.0),
name="linear", **bn_config):
"""Constructs a LinearBNReLU module.
Args:
output_size: Output dimension.
w_init: weight Initializer for snt.Linear.
name: Name of the module.
**bn_config: Optional parameters to be passed to snt.BatchNorm.
"""
super(LinearBNReLU, self).__init__(name=name)
self._linear = snt.Linear(output_size=output_size, w_init=w_init,
name=f"{name}_linear")
self._bn = snt.BatchNorm(create_scale=True, create_offset=True,
name=f"{name}_bn", **bn_config)
def __call__(self, x, is_training):
x = self._linear(x)
x = self._bn(x, is_training=is_training)
return tf.nn.relu(x)