forked from jeonsworld/ViT-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·281 lines (228 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# coding=utf-8
from __future__ import absolute_import, division, print_function
import logging
import os
import random
import numpy as np
from train_args import args
from datetime import timedelta, datetime
import gin
import torch
import torch.distributed as dist
import json
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from apex import amp
from apex.parallel import DistributedDataParallel as DDP
from models.model_vit import VisionTransformer, CONFIGS
from utils.scheduler import WarmupLinearSchedule, WarmupCosineSchedule
from utils.data_utils import get_loader
logger = logging.getLogger(__name__)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def save_model(args, model):
model_to_save = model.module if hasattr(model, 'module') else model
model_checkpoint = os.path.join(args.output_dir, "checkpoint.bin")
torch.save(model_to_save.state_dict(), model_checkpoint)
model_config = {'img_size': 84, 'num_classes': 47, 'model_type': "ViT-B_16", 'dataset': args.dataset,
'weights_file': model_checkpoint}
with open(os.path.join(args.output_dir, "model_config.json"), "w") as outfile:
json.dump(model_config, outfile)
logger.info("Saved model checkpoint to [DIR: %s]", args.output_dir)
@gin.configurable
def model_setup(args, img_size, num_classes, model_type, pretrained_ckpt, dataset, training=True):
config = CONFIGS[model_type]
model = VisionTransformer(config, img_size, zero_head=True, num_classes=num_classes)
if pretrained_ckpt:
if 'npz' in pretrained_ckpt:
model.load_from(np.load(args.pretrained_dir))
else:
model.load_state_dict(torch.load(pretrained_ckpt, map_location=torch.device('cpu')))
num_params = count_parameters(model)
if training:
args.name = args.dataset + '_img' + str(img_size) + '_cls' + str(num_classes)
args.img_size = img_size
args.dataset = dataset
dir_name = os.path.join(args.output_dir, args.name)
# dir_name = os.path.join(args.output_dir,args.name+datetime.now().strftime("%Y%m%d-%H%M%S"))
if not os.path.exists(dir_name):
os.mkdir(dir_name)
args.output_dir = dir_name
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
filename=f'{args.output_dir}/training.log',
filemode='w')
logger.info("{}".format(config))
logger.info("Training parameters %s", args)
logger.info("Total Parameter: \t%2.1fM" % num_params)
print(num_params)
return args, model
def count_parameters(model):
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params / 1000000
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def valid(args, model, writer, test_loader, global_step):
# Validation!
eval_losses = AverageMeter()
logger.info("***** Running Validation *****")
logger.info(" Num steps = %d", len(test_loader))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
all_preds, all_label = [], []
epoch_iterator = tqdm(test_loader,
desc="Validating... (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
loss_fct = torch.nn.CrossEntropyLoss()
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
with torch.no_grad():
logits = model(x)[0]
eval_loss = loss_fct(logits, y)
eval_losses.update(eval_loss.item())
preds = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(preds.detach().cpu().numpy())
all_label.append(y.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], preds.detach().cpu().numpy(), axis=0
)
all_label[0] = np.append(
all_label[0], y.detach().cpu().numpy(), axis=0
)
epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val)
all_preds, all_label = all_preds[0], all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
logger.info("\n")
logger.info("Validation Results")
logger.info("Global Steps: %d" % global_step)
logger.info("Valid Loss: %2.5f" % eval_losses.avg)
logger.info("Valid Accuracy: %2.5f" % accuracy)
writer.add_scalar("test/accuracy", scalar_value=accuracy, global_step=global_step)
return accuracy
def train(args, model):
""" Train the model """
if args.local_rank in [-1, 0]:
writer = SummaryWriter(log_dir=os.path.join(args.log_dir, args.name))
model.to(args.device)
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
# Prepare dataset
train_loader, test_loader = get_loader(args)
# Prepare optimizer and scheduler
optimizer = torch.optim.SGD(model.parameters(),
lr=args.learning_rate,
momentum=0.9,
weight_decay=args.weight_decay)
t_total = args.num_steps
if args.decay_type == "cosine":
scheduler = WarmupCosineSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
else:
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
logger.info("***** Running training *****")
logger.info(" Total optimization steps = %d", args.num_steps)
logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
model.zero_grad()
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
losses = AverageMeter()
global_step, best_acc = 0, 0
while True:
model.train()
epoch_iterator = tqdm(train_loader,
desc="Training (X / X Steps) (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
loss = model(x, y)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
losses.update(loss.item() * args.gradient_accumulation_steps)
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step()
optimizer.step()
optimizer.zero_grad()
global_step += 1
epoch_iterator.set_description(
"Training (%d / %d Steps) (loss=%2.5f)" % (global_step, t_total, losses.val)
)
if args.local_rank in [-1, 0]:
writer.add_scalar("train/loss", scalar_value=losses.val, global_step=global_step)
writer.add_scalar("train/lr", scalar_value=scheduler.get_lr()[0], global_step=global_step)
if global_step % args.eval_every == 0 and args.local_rank in [-1, 0]:
save_model(args, model) # remove this
accuracy = valid(args, model, writer, test_loader, global_step)
if best_acc < accuracy:
save_model(args, model)
best_acc = accuracy
model.train()
if global_step % t_total == 0:
break
losses.reset()
if global_step % t_total == 0:
break
if args.local_rank in [-1, 0]:
writer.close()
logger.info("Best Accuracy: \t%f" % best_acc)
logger.info("End Training!")
def main(args):
gin.parse_config_file(args.model_config, skip_unknown=True)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl',
timeout=timedelta(minutes=60))
args.n_gpu = 1
args.device = device
# Set seed
set_seed(args)
# Model Setup
args, model = model_setup(args)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" %
(args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
# Training
train(args, model)
if __name__ == "__main__":
main(args)