forked from jinhojsk515/SPMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd_smiles2pv.py
164 lines (142 loc) · 6.53 KB
/
d_smiles2pv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import torch
import numpy as np
from SPMM_models import SPMM
import torch.backends.cudnn as cudnn
from transformers import BertTokenizer, WordpieceTokenizer
from dataset import SMILESDataset_pretrain
from torch.utils.data import DataLoader
import random
import pickle
from sklearn.metrics import r2_score
def generate(model, prop_input, text_embeds, text_atts):
prop_embeds = model.property_encoder(inputs_embeds=prop_input, return_dict=True).last_hidden_state
prob_atts = torch.ones(prop_input.size()[:-1], dtype=torch.long).to(prop_input.device)
token_output = model.text_encoder.bert(encoder_embeds=prop_embeds,
attention_mask=prob_atts,
encoder_hidden_states=text_embeds,
encoder_attention_mask=text_atts,
return_dict=True,
is_decoder=True,
mode='fusion',
).last_hidden_state
pred = model.property_mtr_head(token_output).squeeze(-1)[:, -1]
return pred.unsqueeze(1)
@torch.no_grad()
def pv_generate(model, data_loader):
# test
with open('./normalize.pkl', 'rb') as w:
mean, std = pickle.load(w)
device = model.device
tokenizer = model.tokenizer
model.eval()
print("SMILES-to-PV generation...")
# convert list of string to dataloader
if isinstance(data_loader, list):
gather = []
text_input = tokenizer(data_loader, padding='longest', truncation=True, max_length=100, return_tensors="pt").to(device)
text_embeds = model.text_encoder.bert(text_input.input_ids[:, 1:], attention_mask=text_input.attention_mask[:, 1:],
return_dict=True, mode='text').last_hidden_state
prop_input = model.property_cls.expand(len(data_loader), -1, -1)
prediction = []
for _ in range(53):
output = generate(model, prop_input, text_embeds, text_input.attention_mask[:, 1:])
prediction.append(output)
output = model.property_embed(output.unsqueeze(2))
prop_input = torch.cat([prop_input, output], dim=1)
prediction = torch.stack(prediction, dim=-1)
for i in range(len(data_loader)):
gather.append(prediction[i].cpu()*std + mean)
return gather
reference, candidate = [], []
for (prop, text) in data_loader:
text_input = tokenizer(text, padding='longest', truncation=True, max_length=100, return_tensors="pt").to(device)
text_embeds = model.text_encoder.bert(text_input.input_ids[:, 1:], attention_mask=text_input.attention_mask[:, 1:],
return_dict=True, mode='text').last_hidden_state
prop_input = model.property_cls.expand(len(text), -1, -1)
prediction = []
for _ in range(53):
output = generate(model, prop_input, text_embeds, text_input.attention_mask[:, 1:])
prediction.append(output)
output = model.property_embed(output.unsqueeze(2))
prop_input = torch.cat([prop_input, output], dim=1)
prediction = torch.stack(prediction, dim=-1)
for i in range(prop.size(0)):
reference.append(prop[i].cpu())
candidate.append(prediction[i].cpu())
print('SMILES-to-PV generation done')
return reference, candidate
@torch.no_grad()
def metric_eval(ref, cand):
with open('./normalize.pkl', 'rb') as w:
norm = pickle.load(w)
mean, std = norm
mse = []
n_mse = []
rs, cs = [], []
for i in range(len(ref)):
r = (ref[i] * std) + mean
c = (cand[i] * std) + mean
rs.append(r)
cs.append(c)
mse.append((r - c) ** 2)
n_mse.append((ref[i] - cand[i]) ** 2)
mse = torch.stack(mse, dim=0)
rmse = torch.sqrt(torch.mean(mse, dim=0)).squeeze()
n_mse = torch.stack(n_mse, dim=0)
n_rmse = torch.sqrt(torch.mean(n_mse, dim=0))
print('mean of 53 properties\' normalized RMSE:', n_rmse.mean().item())
rs = torch.stack(rs)
cs = torch.stack(cs).squeeze()
r2 = []
for i in range(rs.size(1)):
r2.append(r2_score(rs[:, i], cs[:, i]))
r2 = np.array(r2)
print('mean r^2 coefficient of determination:', r2.mean().item())
def main(args, config):
device = torch.device(args.device)
# fix the seed for reproducibility
seed = random.randint(0, 1000)
print('seed:', seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
# === Dataset === #
print("Creating dataset")
dataset_test = SMILESDataset_pretrain(args.input_file)
test_loader = DataLoader(dataset_test, batch_size=config['batch_size_test'], pin_memory=True, drop_last=False)
tokenizer = BertTokenizer(vocab_file=args.vocab_filename, do_lower_case=False, do_basic_tokenize=False)
tokenizer.wordpiece_tokenizer = WordpieceTokenizer(vocab=tokenizer.vocab, unk_token=tokenizer.unk_token, max_input_chars_per_word=250)
# === Model === #
print("Creating model")
model = SPMM(config=config, tokenizer=tokenizer, no_train=True)
if args.checkpoint:
print('LOADING PRETRAINED MODEL..')
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['state_dict']
for key in list(state_dict.keys()):
if 'queue' in key:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % args.checkpoint)
print(msg)
model = model.to(device)
print("=" * 50)
r_test, c_test = pv_generate(model, test_loader)
metric_eval(r_test, c_test)
print("=" * 50)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default='./Pretrain/checkpoint_SPMM.ckpt')
parser.add_argument('--vocab_filename', default='./vocab_bpe_300.txt')
parser.add_argument('--input_file', default='../SPMM_release/data/3_SMILES2PV/zinc15_1k_unseen.txt')
parser.add_argument('--device', default='cuda')
args = parser.parse_args()
config = {
'embed_dim': 256,
'batch_size_test': 64,
'bert_config_text': './config_bert.json',
'bert_config_property': './config_bert_property.json',
}
main(args, config)