forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscavenger.py
285 lines (226 loc) · 8.27 KB
/
scavenger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Simple Scavenger environment."""
import copy
import enum
import sys
import dm_env
import numpy as np
from option_keyboard import auto_reset_environment
this_module = sys.modules[__name__]
class Action(enum.IntEnum):
"""Actions available to the player."""
UP = 0
DOWN = 1
LEFT = 2
RIGHT = 3
def _one_hot(indices, depth):
return np.eye(depth)[indices]
def _random_pos(arena_size):
return tuple(np.random.randint(0, arena_size, size=[2]).tolist())
class Scavenger(auto_reset_environment.Base):
"""Simple Scavenger."""
def __init__(self,
arena_size,
num_channels,
max_num_steps,
default_w=None,
num_init_objects=15,
object_priors=None,
egocentric=True,
rewarder=None,
aux_tasks_w=None):
self._arena_size = arena_size
self._num_channels = num_channels
self._max_num_steps = max_num_steps
self._num_init_objects = num_init_objects
self._egocentric = egocentric
self._rewarder = (
getattr(this_module, rewarder)() if rewarder is not None else None)
self._aux_tasks_w = aux_tasks_w
if object_priors is None:
self._object_priors = np.ones(num_channels) / num_channels
else:
assert len(object_priors) == num_channels
self._object_priors = np.array(object_priors) / np.sum(object_priors)
if default_w is None:
self._default_w = np.ones(shape=(num_channels,))
else:
self._default_w = default_w
self._num_channels_all = self._num_channels + 2
self._step_in_episode = None
@property
def state(self):
return copy.deepcopy([
self._step_in_episode,
self._walls,
self._objects,
self._player_pos,
self._prev_collected,
])
def set_state(self, state):
state_ = copy.deepcopy(state)
self._step_in_episode = state_[0]
self._walls = state_[1]
self._objects = state_[2]
self._player_pos = state_[3]
self._prev_collected = state_[4]
@property
def player_pos(self):
return self._player_pos
def _reset(self):
self._step_in_episode = 0
# Walls.
self._walls = []
for col in range(self._arena_size):
new_pos = (0, col)
if new_pos not in self._walls:
self._walls.append(new_pos)
for row in range(self._arena_size):
new_pos = (row, 0)
if new_pos not in self._walls:
self._walls.append(new_pos)
# Objects.
self._objects = dict()
for _ in range(self._num_init_objects):
while True:
new_pos = _random_pos(self._arena_size)
if new_pos not in self._objects and new_pos not in self._walls:
self._objects[new_pos] = np.random.multinomial(1, self._object_priors)
break
# Player
self._player_pos = _random_pos(self._arena_size)
while self._player_pos in self._objects or self._player_pos in self._walls:
self._player_pos = _random_pos(self._arena_size)
self._prev_collected = np.zeros(shape=(self._num_channels,))
obs = self.observation()
return dm_env.restart(obs)
def _step(self, action):
self._step_in_episode += 1
if action == Action.UP:
new_player_pos = (self._player_pos[0], self._player_pos[1] + 1)
elif action == Action.DOWN:
new_player_pos = (self._player_pos[0], self._player_pos[1] - 1)
elif action == Action.LEFT:
new_player_pos = (self._player_pos[0] - 1, self._player_pos[1])
elif action == Action.RIGHT:
new_player_pos = (self._player_pos[0] + 1, self._player_pos[1])
else:
raise ValueError("Invalid action `{}`".format(action))
# Toroidal.
new_player_pos = (
(new_player_pos[0] + self._arena_size) % self._arena_size,
(new_player_pos[1] + self._arena_size) % self._arena_size,
)
if new_player_pos not in self._walls:
self._player_pos = new_player_pos
# Compute rewards.
consumed = self._objects.pop(self._player_pos,
np.zeros(shape=(self._num_channels,)))
if self._rewarder is None:
reward = np.dot(consumed, np.array(self._default_w))
else:
reward = self._rewarder.get_reward(self.state, consumed)
self._prev_collected = np.copy(consumed)
assert self._player_pos not in self._objects
assert self._player_pos not in self._walls
# Render everything.
obs = self.observation()
if self._step_in_episode < self._max_num_steps:
return dm_env.transition(reward=reward, observation=obs)
else:
# termination with discount=1.0
return dm_env.truncation(reward=reward, observation=obs)
def observation(self, force_non_egocentric=False):
arena_shape = [self._arena_size] * 2 + [self._num_channels_all]
arena = np.zeros(shape=arena_shape, dtype=np.float32)
def offset_position(pos_):
use_egocentric = self._egocentric and not force_non_egocentric
offset = self._player_pos if use_egocentric else (0, 0)
x = (pos_[0] - offset[0] + self._arena_size) % self._arena_size
y = (pos_[1] - offset[1] + self._arena_size) % self._arena_size
return (x, y)
player_pos = offset_position(self._player_pos)
arena[player_pos] = _one_hot(self._num_channels, self._num_channels_all)
for pos, obj in self._objects.items():
x, y = offset_position(pos)
arena[x, y, :self._num_channels] = obj
for pos in self._walls:
x, y = offset_position(pos)
arena[x, y] = _one_hot(self._num_channels + 1, self._num_channels_all)
collected_resources = np.copy(self._prev_collected).astype(np.float32)
obs = dict(
arena=arena,
cumulants=collected_resources,
)
if self._aux_tasks_w is not None:
obs["aux_tasks_reward"] = np.dot(
np.array(self._aux_tasks_w), self._prev_collected).astype(np.float32)
return obs
def observation_spec(self):
arena = dm_env.specs.BoundedArray(
shape=(self._arena_size, self._arena_size, self._num_channels_all),
dtype=np.float32,
minimum=0.,
maximum=1.,
name="arena")
collected_resources = dm_env.specs.BoundedArray(
shape=(self._num_channels,),
dtype=np.float32,
minimum=-1e9,
maximum=1e9,
name="collected_resources")
obs_spec = dict(
arena=arena,
cumulants=collected_resources,
)
if self._aux_tasks_w is not None:
obs_spec["aux_tasks_reward"] = dm_env.specs.BoundedArray(
shape=(len(self._aux_tasks_w),),
dtype=np.float32,
minimum=-1e9,
maximum=1e9,
name="aux_tasks_reward")
return obs_spec
def action_spec(self):
return dm_env.specs.DiscreteArray(num_values=len(Action), name="action")
class SequentialCollectionRewarder(object):
"""SequentialCollectionRewarder."""
def get_reward(self, state, consumed):
"""Get reward."""
object_counts = sum(list(state[2].values()) + [np.zeros(len(consumed))])
reward = 0.0
if np.sum(consumed) > 0:
for i in range(len(consumed)):
if np.all(object_counts[:i] <= object_counts[i]):
reward += consumed[i]
else:
reward -= consumed[i]
return reward
class BalancedCollectionRewarder(object):
"""BalancedCollectionRewarder."""
def get_reward(self, state, consumed):
"""Get reward."""
object_counts = sum(list(state[2].values()) + [np.zeros(len(consumed))])
reward = 0.0
if np.sum(consumed) > 0:
for i in range(len(consumed)):
if (object_counts[i] + consumed[i]) >= np.max(object_counts):
reward += consumed[i]
else:
reward -= consumed[i]
return reward