-
Notifications
You must be signed in to change notification settings - Fork 7
/
munkres.h
464 lines (390 loc) · 12.9 KB
/
munkres.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
* Copyright (c) 2007 John Weaver
* Copyright (c) 2015 Miroslav Krajicek
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#if !defined(_MUNKRES_H_)
#define _MUNKRES_H_
#include "matrix.h"
#include <list>
#include <utility>
#include <iostream>
#include <cmath>
#include <limits>
template<typename Data> class Munkres
{
static constexpr int NORMAL = 0;
static constexpr int STAR = 1;
static constexpr int PRIME = 2;
public:
/*
*
* Linear assignment problem solution
* [modifies matrix in-place.]
* matrix(row,col): row major format assumed.
*
* Assignments are remaining 0 values
* (extra 0 values are replaced with -1)
*
*/
void solve(Matrix<Data> &m) {
const size_t rows = m.rows(),
columns = m.columns(),
size = std::max(rows, columns);
#ifdef DEBUG
std::cout << "Munkres input: " << m << std::endl;
#endif
// Copy input matrix
this->matrix = m;
if ( rows != columns ) {
// If the input matrix isn't square, make it square
// and fill the empty values with the largest value present
// in the matrix.
matrix.resize(size, size, matrix.max());
}
// STAR == 1 == starred, PRIME == 2 == primed
mask_matrix.resize(size, size);
row_mask = new bool[size];
col_mask = new bool[size];
for ( size_t i = 0 ; i < size ; i++ ) {
row_mask[i] = false;
}
for ( size_t i = 0 ; i < size ; i++ ) {
col_mask[i] = false;
}
// Prepare the matrix values...
// If there were any infinities, replace them with a value greater
// than the maximum value in the matrix.
replace_infinites(matrix);
minimize_along_direction(matrix, rows >= columns);
minimize_along_direction(matrix, rows < columns);
// Follow the steps
int step = 1;
while ( step ) {
switch ( step ) {
case 1:
step = step1();
// step is always 2
break;
case 2:
step = step2();
// step is always either 0 or 3
break;
case 3:
step = step3();
// step in [3, 4, 5]
break;
case 4:
step = step4();
// step is always 2
break;
case 5:
step = step5();
// step is always 3
break;
}
}
// Store results
for ( size_t row = 0 ; row < size ; row++ ) {
for ( size_t col = 0 ; col < size ; col++ ) {
if ( mask_matrix(row, col) == STAR ) {
matrix(row, col) = 0;
} else {
matrix(row, col) = -1;
}
}
}
#ifdef DEBUG
std::cout << "Munkres output: " << matrix << std::endl;
#endif
// Remove the excess rows or columns that we added to fit the
// input to a square matrix.
matrix.resize(rows, columns);
m = matrix;
delete [] row_mask;
delete [] col_mask;
}
static void replace_infinites(Matrix<Data> &matrix) {
const size_t rows = matrix.rows(),
columns = matrix.columns();
assert( rows > 0 && columns > 0 );
double max = matrix(0, 0);
constexpr auto infinity = std::numeric_limits<double>::infinity();
// Find the greatest value in the matrix that isn't infinity.
for ( size_t row = 0 ; row < rows ; row++ ) {
for ( size_t col = 0 ; col < columns ; col++ ) {
if ( matrix(row, col) != infinity ) {
if ( max == infinity ) {
max = matrix(row, col);
} else {
max = std::max<double>(max, matrix(row, col));
}
}
}
}
// a value higher than the maximum value present in the matrix.
if ( max == infinity ) {
// This case only occurs when all values are infinite.
max = 0;
} else {
max++;
}
for ( size_t row = 0 ; row < rows ; row++ ) {
for ( size_t col = 0 ; col < columns ; col++ ) {
if ( matrix(row, col) == infinity ) {
matrix(row, col) = max;
}
}
}
}
static void minimize_along_direction(Matrix<Data> &matrix, const bool over_columns) {
const size_t outer_size = over_columns ? matrix.columns() : matrix.rows(),
inner_size = over_columns ? matrix.rows() : matrix.columns();
// Look for a minimum value to subtract from all values along
// the "outer" direction.
for ( size_t i = 0 ; i < outer_size ; i++ ) {
double min = over_columns ? matrix(0, i) : matrix(i, 0);
// As long as the current minimum is greater than zero,
// keep looking for the minimum.
// Start at one because we already have the 0th value in min.
for ( size_t j = 1 ; j < inner_size && min > 0 ; j++ ) {
min = std::min<double>(
min,
over_columns ? matrix(j, i) : matrix(i, j));
}
if ( min > 0 ) {
for ( size_t j = 0 ; j < inner_size ; j++ ) {
if ( over_columns ) {
matrix(j, i) -= min;
} else {
matrix(i, j) -= min;
}
}
}
}
}
private:
inline bool find_uncovered_in_matrix(const double item, size_t &row, size_t &col) const {
const size_t rows = matrix.rows(),
columns = matrix.columns();
for ( row = 0 ; row < rows ; row++ ) {
if ( !row_mask[row] ) {
for ( col = 0 ; col < columns ; col++ ) {
if ( !col_mask[col] ) {
if ( matrix(row,col) == item ) {
return true;
}
}
}
}
}
return false;
}
bool pair_in_list(const std::pair<size_t,size_t> &needle, const std::list<std::pair<size_t,size_t> > &haystack) {
for ( std::list<std::pair<size_t,size_t> >::const_iterator i = haystack.begin() ; i != haystack.end() ; i++ ) {
if ( needle == *i ) {
return true;
}
}
return false;
}
int step1() {
const size_t rows = matrix.rows(),
columns = matrix.columns();
for ( size_t row = 0 ; row < rows ; row++ ) {
for ( size_t col = 0 ; col < columns ; col++ ) {
if ( 0 == matrix(row, col) ) {
for ( size_t nrow = 0 ; nrow < row ; nrow++ )
if ( STAR == mask_matrix(nrow,col) )
goto next_column;
mask_matrix(row,col) = STAR;
goto next_row;
}
next_column:;
}
next_row:;
}
return 2;
}
int step2() {
const size_t rows = matrix.rows(),
columns = matrix.columns();
size_t covercount = 0;
for ( size_t row = 0 ; row < rows ; row++ )
for ( size_t col = 0 ; col < columns ; col++ )
if ( STAR == mask_matrix(row, col) ) {
col_mask[col] = true;
covercount++;
}
if ( covercount >= matrix.minsize() ) {
#ifdef DEBUG
std::cout << "Final cover count: " << covercount << std::endl;
#endif
return 0;
}
#ifdef DEBUG
std::cout << "Munkres matrix has " << covercount << " of " << matrix.minsize() << " Columns covered:" << std::endl;
std::cout << matrix << std::endl;
#endif
return 3;
}
int step3() {
/*
Main Zero Search
1. Find an uncovered Z in the distance matrix and prime it. If no such zero exists, go to Step 5
2. If No Z* exists in the row of the Z', go to Step 4.
3. If a Z* exists, cover this row and uncover the column of the Z*. Return to Step 3.1 to find a new Z
*/
if ( find_uncovered_in_matrix(0, saverow, savecol) ) {
mask_matrix(saverow,savecol) = PRIME; // prime it.
} else {
return 5;
}
for ( size_t ncol = 0 ; ncol < matrix.columns() ; ncol++ ) {
if ( mask_matrix(saverow,ncol) == STAR ) {
row_mask[saverow] = true; //cover this row and
col_mask[ncol] = false; // uncover the column containing the starred zero
return 3; // repeat
}
}
return 4; // no starred zero in the row containing this primed zero
}
int step4() {
const size_t rows = matrix.rows(),
columns = matrix.columns();
// seq contains pairs of row/column values where we have found
// either a star or a prime that is part of the ``alternating sequence``.
std::list<std::pair<size_t,size_t> > seq;
// use saverow, savecol from step 3.
std::pair<size_t,size_t> z0(saverow, savecol);
seq.insert(seq.end(), z0);
// We have to find these two pairs:
std::pair<size_t,size_t> z1(-1, -1);
std::pair<size_t,size_t> z2n(-1, -1);
size_t row, col = savecol;
/*
Increment Set of Starred Zeros
1. Construct the ``alternating sequence'' of primed and starred zeros:
Z0 : Unpaired Z' from Step 4.2
Z1 : The Z* in the column of Z0
Z[2N] : The Z' in the row of Z[2N-1], if such a zero exists
Z[2N+1] : The Z* in the column of Z[2N]
The sequence eventually terminates with an unpaired Z' = Z[2N] for some N.
*/
bool madepair;
do {
madepair = false;
for ( row = 0 ; row < rows ; row++ ) {
if ( mask_matrix(row,col) == STAR ) {
z1.first = row;
z1.second = col;
if ( pair_in_list(z1, seq) ) {
continue;
}
madepair = true;
seq.insert(seq.end(), z1);
break;
}
}
if ( !madepair )
break;
madepair = false;
for ( col = 0 ; col < columns ; col++ ) {
if ( mask_matrix(row, col) == PRIME ) {
z2n.first = row;
z2n.second = col;
if ( pair_in_list(z2n, seq) ) {
continue;
}
madepair = true;
seq.insert(seq.end(), z2n);
break;
}
}
} while ( madepair );
for ( std::list<std::pair<size_t,size_t> >::iterator i = seq.begin() ;
i != seq.end() ;
i++ ) {
// 2. Unstar each starred zero of the sequence.
if ( mask_matrix(i->first,i->second) == STAR )
mask_matrix(i->first,i->second) = NORMAL;
// 3. Star each primed zero of the sequence,
// thus increasing the number of starred zeros by one.
if ( mask_matrix(i->first,i->second) == PRIME )
mask_matrix(i->first,i->second) = STAR;
}
// 4. Erase all primes, uncover all columns and rows,
for ( size_t row = 0 ; row < mask_matrix.rows() ; row++ ) {
for ( size_t col = 0 ; col < mask_matrix.columns() ; col++ ) {
if ( mask_matrix(row,col) == PRIME ) {
mask_matrix(row,col) = NORMAL;
}
}
}
for ( size_t i = 0 ; i < rows ; i++ ) {
row_mask[i] = false;
}
for ( size_t i = 0 ; i < columns ; i++ ) {
col_mask[i] = false;
}
// and return to Step 2.
return 2;
}
int step5() {
const size_t rows = matrix.rows(),
columns = matrix.columns();
/*
New Zero Manufactures
1. Let h be the smallest uncovered entry in the (modified) distance matrix.
2. Add h to all covered rows.
3. Subtract h from all uncovered columns
4. Return to Step 3, without altering stars, primes, or covers.
*/
double h = std::numeric_limits<double>::max();
for ( size_t row = 0 ; row < rows ; row++ ) {
if ( !row_mask[row] ) {
for ( size_t col = 0 ; col < columns ; col++ ) {
if ( !col_mask[col] ) {
if ( h > matrix(row, col) && matrix(row, col) != 0 ) {
h = matrix(row, col);
}
}
}
}
}
for ( size_t row = 0 ; row < rows ; row++ ) {
if ( row_mask[row] ) {
for ( size_t col = 0 ; col < columns ; col++ ) {
matrix(row, col) += h;
}
}
}
for ( size_t col = 0 ; col < columns ; col++ ) {
if ( !col_mask[col] ) {
for ( size_t row = 0 ; row < rows ; row++ ) {
matrix(row, col) -= h;
}
}
}
return 3;
}
Matrix<int> mask_matrix;
Matrix<Data> matrix;
bool *row_mask;
bool *col_mask;
size_t saverow = 0, savecol = 0;
};
#endif /* !defined(_MUNKRES_H_) */