forked from mhw32/multimodal-vae-public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
268 lines (218 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import sys
import shutil
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
from model import MVAE
from datasets import FashionMNIST
def elbo_loss(recon_image, image, recon_text, text, mu, logvar,
lambda_image=1.0, lambda_text=1.0, annealing_factor=1):
"""Bimodal ELBO loss function.
@param recon_image: torch.Tensor
reconstructed image
@param image: torch.Tensor
input image
@param recon_text: torch.Tensor
reconstructed text probabilities
@param text: torch.Tensor
input text (one-hot)
@param mu: torch.Tensor
mean of latent distribution
@param logvar: torch.Tensor
log-variance of latent distribution
@param lambda_image: float [default: 1.0]
weight for image BCE
@param lambda_text: float [default: 1.0]
weight for text BCE
@param annealing_factor: integer [default: 1]
multiplier for KL divergence term
@return ELBO: torch.Tensor
evidence lower bound
"""
image_bce, text_bce = 0, 0 # default params
if recon_image is not None and image is not None:
image_bce = torch.sum(binary_cross_entropy_with_logits(
recon_image.view(-1, 1 * 28 * 28),
image.view(-1, 1 * 28 * 28)), dim=1)
if recon_text is not None and text is not None:
text_bce = torch.sum(cross_entropy(recon_text, text), dim=1)
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=1)
ELBO = torch.mean(lambda_image * image_bce + lambda_text * text_bce
+ annealing_factor * KLD)
return ELBO
def binary_cross_entropy_with_logits(input, target):
"""Sigmoid Activation + Binary Cross Entropy
@param input: torch.Tensor (size N)
@param target: torch.Tensor (size N)
@return loss: torch.Tensor (size N)
"""
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(
target.size(), input.size()))
return (torch.clamp(input, 0) - input * target
+ torch.log(1 + torch.exp(-torch.abs(input))))
def cross_entropy(input, target, eps=1e-6):
"""k-Class Cross Entropy (Log Softmax + Log Loss)
@param input: torch.Tensor (size N x K)
@param target: torch.Tensor (size N x K)
@param eps: error to add (default: 1e-6)
@return loss: torch.Tensor (size N)
"""
if not (target.size(0) == input.size(0)):
raise ValueError(
"Target size ({}) must be the same as input size ({})".format(
target.size(0), input.size(0)))
log_input = F.log_softmax(input + eps, dim=1)
y_onehot = Variable(log_input.data.new(log_input.size()).zero_())
y_onehot = y_onehot.scatter(1, target.unsqueeze(1), 1)
loss = y_onehot * log_input
return -loss
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, is_best, folder='./', filename='checkpoint.pth.tar'):
if not os.path.isdir(folder):
os.mkdir(folder)
torch.save(state, os.path.join(folder, filename))
if is_best:
shutil.copyfile(os.path.join(folder, filename),
os.path.join(folder, 'model_best.pth.tar'))
def load_checkpoint(file_path, use_cuda=False):
checkpoint = torch.load(file_path) if use_cuda else \
torch.load(file_path, map_location=lambda storage, location: storage)
model = MVAE(checkpoint['n_latents'])
model.load_state_dict(checkpoint['state_dict'])
return model
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--n-latents', type=int, default=64,
help='size of the latent embedding [default: 64]')
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='input batch size for training [default: 100]')
parser.add_argument('--epochs', type=int, default=500, metavar='N',
help='number of epochs to train [default: 500]')
parser.add_argument('--annealing-epochs', type=int, default=200, metavar='N',
help='number of epochs to anneal KL for [default: 200]')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate [default: 1e-3]')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status [default: 10]')
parser.add_argument('--lambda-image', type=float, default=1.,
help='multipler for image reconstruction [default: 1]')
parser.add_argument('--lambda-text', type=float, default=10.,
help='multipler for text reconstruction [default: 10]')
parser.add_argument('--cuda', action='store_true', default=False,
help='enables CUDA training [default: False]')
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
if not os.path.isdir('./trained_models'):
os.makedirs('./trained_models')
train_loader = torch.utils.data.DataLoader(
FashionMNIST('./data', train=True, download=True, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True)
N_mini_batches = len(train_loader)
test_loader = torch.utils.data.DataLoader(
FashionMNIST('./data', train=False, download=True, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=False)
model = MVAE(args.n_latents)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.cuda:
model.cuda()
def train(epoch):
model.train()
train_loss_meter = AverageMeter()
# NOTE: is_paired is 1 if the example is paired
for batch_idx, (image, text) in enumerate(train_loader):
if epoch < args.annealing_epochs:
# compute the KL annealing factor for the current mini-batch in the current epoch
annealing_factor = (float(batch_idx + epoch * N_mini_batches + 1) /
float(args.annealing_epochs * N_mini_batches))
else:
# by default the KL annealing factor is unity
annealing_factor = 1.0
if args.cuda:
image = image.cuda()
text = text.cuda()
image = Variable(image)
text = Variable(text)
batch_size = len(image)
# refresh the optimizer
optimizer.zero_grad()
# pass data through model
recon_image_1, recon_text_1, mu_1, logvar_1 = model(image, text)
recon_image_2, recon_text_2, mu_2, logvar_2 = model(image)
recon_image_3, recon_text_3, mu_3, logvar_3 = model(text=text)
# compute ELBO for each data combo
joint_loss = elbo_loss(recon_image_1, image, recon_text_1, text, mu_1, logvar_1,
lambda_image=args.lambda_image, lambda_text=args.lambda_text,
annealing_factor=annealing_factor)
image_loss = elbo_loss(recon_image_2, image, None, None, mu_2, logvar_2,
lambda_image=args.lambda_image, lambda_text=args.lambda_text,
annealing_factor=annealing_factor)
text_loss = elbo_loss(None, None, recon_text_3, text, mu_3, logvar_3,
lambda_image=args.lambda_image, lambda_text=args.lambda_text,
annealing_factor=annealing_factor)
train_loss = joint_loss + image_loss + text_loss
train_loss_meter.update(train_loss.data[0], batch_size)
# compute gradients and take step
train_loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAnnealing-Factor: {:.3f}'.format(
epoch, batch_idx * len(image), len(train_loader.dataset),
100. * batch_idx / len(train_loader), train_loss_meter.avg, annealing_factor))
print('====> Epoch: {}\tLoss: {:.4f}'.format(epoch, train_loss_meter.avg))
def test(epoch):
model.eval()
test_loss_meter = AverageMeter()
for batch_idx, (image, text) in enumerate(test_loader):
if args.cuda:
image = image.cuda()
text = text.cuda()
image = Variable(image, volatile=True)
text = Variable(text, volatile=True)
batch_size = len(image)
recon_image_1, recon_text_1, mu_1, logvar_1 = model(image, text)
recon_image_2, recon_text_2, mu_2, logvar_2 = model(image)
recon_image_3, recon_text_3, mu_3, logvar_3 = model(text=text)
joint_loss = elbo_loss(recon_image_1, image, recon_text_1, text, mu_1, logvar_1)
image_loss = elbo_loss(recon_image_2, image, None, None, mu_2, logvar_2)
text_loss = elbo_loss(None, None, recon_text_3, text, mu_3, logvar_3)
test_loss = joint_loss + image_loss + text_loss
test_loss_meter.update(test_loss.data[0], batch_size)
print('====> Test Loss: {:.4f}'.format(test_loss_meter.avg))
return test_loss_meter.avg
best_loss = sys.maxint
for epoch in range(1, args.epochs + 1):
train(epoch)
test_loss = test(epoch)
is_best = test_loss < best_loss
best_loss = min(test_loss, best_loss)
# save the best model and current model
save_checkpoint({
'state_dict': model.state_dict(),
'best_loss': best_loss,
'n_latents': args.n_latents,
'optimizer' : optimizer.state_dict(),
}, is_best, folder='./trained_models')