forked from 1365843167/-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bninception.py
557 lines (514 loc) · 43.8 KB
/
bninception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import os
import sys
__all__ = ['BNInception', 'bninception']
pretrained_settings = {
'bninception': {
'imagenet': {
# Was ported using python2 (may trigger warning)
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/bn_inception-52deb4733.pth',
# 'url': 'http://yjxiong.me/others/bn_inception-9f5701afb96c8044.pth',
'input_space': 'BGR',
'input_size': [3, 224, 224], #改成cunet 256
'input_range': [0, 255], #像素值范围,之后可以归一化到0~1之间
'mean': [104, 117, 128], #均值像素
'std': [1, 1, 1], #方差
'num_classes': 1000 #68点或106点
}
}
}
class BNInception(nn.Module):
def __init__(self, num_classes=68): #输入256 大小特征图
super(BNInception, self).__init__()
inplace = True #64
self.conv1_7x7_s2 = nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3)) #128*128 *64
self.conv1_7x7_s2_bn = nn.BatchNorm2d(64, affine=True)
self.conv1_relu_7x7 = nn.ReLU (inplace)
self.pool1_3x3_s2 = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True) #卷积核大小扩张1变为5*5,ceil_mode=True,f map补0操作, 62*62 *64
self.conv2_3x3_reduce = nn.Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) #63*63 *64
self.conv2_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.conv2_relu_3x3_reduce = nn.ReLU (inplace)
self.conv2_3x3 = nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #63*63 *192 通道数增加
self.conv2_3x3_bn = nn.BatchNorm2d(192, affine=True)
self.conv2_relu_3x3 = nn.ReLU (inplace)
self.pool2_3x3_s2 = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True) #k=5, 30*30 *192
#开始inception1_a
self.inception_3a_1x1 = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64 降通道数两个分支先1*1卷积
self.inception_3a_1x1_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3a_relu_1x1 = nn.ReLU (inplace)
self.inception_3a_3x3_reduce = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1)) #另一分支降通道数 30*30 *64
self.inception_3a_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3a_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_3a_3x3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #再3*3conv , 30*30 *64
self.inception_3a_3x3_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3a_relu_3x3 = nn.ReLU (inplace)
self.inception_3a_double_3x3_reduce = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64
self.inception_3a_double_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3a_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_3a_double_3x3_1 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #30*30 *96
self.inception_3a_double_3x3_1_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3a_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_3a_double_3x3_2 = nn.Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #30*30 *96
self.inception_3a_double_3x3_2_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3a_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_3a_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True) #3*3核大小,30*30 *96
self.inception_3a_pool_proj = nn.Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1)) #30*30 *32
self.inception_3a_pool_proj_bn = nn.BatchNorm2d(32, affine=True)
self.inception_3a_relu_pool_proj = nn.ReLU (inplace)
#开始inception1_b
self.inception_3b_1x1 = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64
self.inception_3b_1x1_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3b_relu_1x1 = nn.ReLU (inplace)
self.inception_3b_3x3_reduce = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64
self.inception_3b_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3b_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_3b_3x3 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #30*30 *96
self.inception_3b_3x3_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3b_relu_3x3 = nn.ReLU (inplace)
self.inception_3b_double_3x3_reduce = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64
self.inception_3b_double_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3b_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_3b_double_3x3_1 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #30*30 *96
self.inception_3b_double_3x3_1_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3b_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_3b_double_3x3_2 = nn.Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #30*30 *96
self.inception_3b_double_3x3_2_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3b_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_3b_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True) #30*30 *96
self.inception_3b_pool_proj = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64
self.inception_3b_pool_proj_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3b_relu_pool_proj = nn.ReLU (inplace)
#开始inception1_c
self.inception_3c_3x3_reduce = nn.Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1)) #30*30 *128
self.inception_3c_3x3_reduce_bn = nn.BatchNorm2d(128, affine=True)
self.inception_3c_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_3c_3x3 = nn.Conv2d(128, 160, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) #16*16 *160
self.inception_3c_3x3_bn = nn.BatchNorm2d(160, affine=True)
self.inception_3c_relu_3x3 = nn.ReLU (inplace)
self.inception_3c_double_3x3_reduce = nn.Conv2d(320, 64, kernel_size=(1, 1), stride=(1, 1)) #30*30 *64
self.inception_3c_double_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.inception_3c_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_3c_double_3x3_1 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #30*30 *96
self.inception_3c_double_3x3_1_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3c_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_3c_double_3x3_2 = nn.Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) #16*16 *96
self.inception_3c_double_3x3_2_bn = nn.BatchNorm2d(96, affine=True)
self.inception_3c_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_3c_pool = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True) #7*7 *96
#开始inception1_4a
self.inception_4a_1x1 = nn.Conv2d(576, 224, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_1x1_bn = nn.BatchNorm2d(224, affine=True)
self.inception_4a_relu_1x1 = nn.ReLU (inplace)
self.inception_4a_3x3_reduce = nn.Conv2d(576, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_3x3_reduce_bn = nn.BatchNorm2d(64, affine=True)
self.inception_4a_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4a_3x3 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4a_3x3_bn = nn.BatchNorm2d(96, affine=True)
self.inception_4a_relu_3x3 = nn.ReLU (inplace)
self.inception_4a_double_3x3_reduce = nn.Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_double_3x3_reduce_bn = nn.BatchNorm2d(96, affine=True)
self.inception_4a_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4a_double_3x3_1 = nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4a_double_3x3_1_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4a_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4a_double_3x3_2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4a_double_3x3_2_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4a_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4a_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4a_pool_proj = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_pool_proj_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4a_relu_pool_proj = nn.ReLU (inplace)
#开始inception1_4b
self.inception_4b_1x1 = nn.Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_1x1_bn = nn.BatchNorm2d(192, affine=True)
self.inception_4b_relu_1x1 = nn.ReLU (inplace)
self.inception_4b_3x3_reduce = nn.Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_3x3_reduce_bn = nn.BatchNorm2d(96, affine=True)
self.inception_4b_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4b_3x3 = nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4b_3x3_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4b_relu_3x3 = nn.ReLU (inplace)
self.inception_4b_double_3x3_reduce = nn.Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_double_3x3_reduce_bn = nn.BatchNorm2d(96, affine=True)
self.inception_4b_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4b_double_3x3_1 = nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4b_double_3x3_1_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4b_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4b_double_3x3_2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4b_double_3x3_2_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4b_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4b_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4b_pool_proj = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_pool_proj_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4b_relu_pool_proj = nn.ReLU (inplace)
self.inception_4c_1x1 = nn.Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_1x1_bn = nn.BatchNorm2d(160, affine=True)
self.inception_4c_relu_1x1 = nn.ReLU (inplace)
self.inception_4c_3x3_reduce = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_3x3_reduce_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4c_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4c_3x3 = nn.Conv2d(128, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4c_3x3_bn = nn.BatchNorm2d(160, affine=True)
self.inception_4c_relu_3x3 = nn.ReLU (inplace)
self.inception_4c_double_3x3_reduce = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_double_3x3_reduce_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4c_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4c_double_3x3_1 = nn.Conv2d(128, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4c_double_3x3_1_bn = nn.BatchNorm2d(160, affine=True)
self.inception_4c_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4c_double_3x3_2 = nn.Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4c_double_3x3_2_bn = nn.BatchNorm2d(160, affine=True)
self.inception_4c_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4c_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4c_pool_proj = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_pool_proj_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4c_relu_pool_proj = nn.ReLU (inplace)
#开始inception1_4d
self.inception_4d_1x1 = nn.Conv2d(608, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_1x1_bn = nn.BatchNorm2d(96, affine=True)
self.inception_4d_relu_1x1 = nn.ReLU (inplace)
self.inception_4d_3x3_reduce = nn.Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_3x3_reduce_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4d_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4d_3x3 = nn.Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4d_3x3_bn = nn.BatchNorm2d(192, affine=True)
self.inception_4d_relu_3x3 = nn.ReLU (inplace)
self.inception_4d_double_3x3_reduce = nn.Conv2d(608, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_double_3x3_reduce_bn = nn.BatchNorm2d(160, affine=True)
self.inception_4d_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4d_double_3x3_1 = nn.Conv2d(160, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4d_double_3x3_1_bn = nn.BatchNorm2d(192, affine=True)
self.inception_4d_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4d_double_3x3_2 = nn.Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4d_double_3x3_2_bn = nn.BatchNorm2d(192, affine=True)
self.inception_4d_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4d_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4d_pool_proj = nn.Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_pool_proj_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4d_relu_pool_proj = nn.ReLU (inplace)
#开始inception1_4e
self.inception_4e_3x3_reduce = nn.Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4e_3x3_reduce_bn = nn.BatchNorm2d(128, affine=True)
self.inception_4e_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4e_3x3 = nn.Conv2d(128, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.inception_4e_3x3_bn = nn.BatchNorm2d(192, affine=True)
self.inception_4e_relu_3x3 = nn.ReLU (inplace)
self.inception_4e_double_3x3_reduce = nn.Conv2d(608, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_4e_double_3x3_reduce_bn = nn.BatchNorm2d(192, affine=True)
self.inception_4e_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4e_double_3x3_1 = nn.Conv2d(192, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4e_double_3x3_1_bn = nn.BatchNorm2d(256, affine=True)
self.inception_4e_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4e_double_3x3_2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.inception_4e_double_3x3_2_bn = nn.BatchNorm2d(256, affine=True)
self.inception_4e_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4e_pool = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True)
#开始inception1_5a
self.inception_5a_1x1 = nn.Conv2d(1056, 352, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_1x1_bn = nn.BatchNorm2d(352, affine=True)
self.inception_5a_relu_1x1 = nn.ReLU (inplace)
self.inception_5a_3x3_reduce = nn.Conv2d(1056, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_3x3_reduce_bn = nn.BatchNorm2d(192, affine=True)
self.inception_5a_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_5a_3x3 = nn.Conv2d(192, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5a_3x3_bn = nn.BatchNorm2d(320, affine=True)
self.inception_5a_relu_3x3 = nn.ReLU (inplace)
self.inception_5a_double_3x3_reduce = nn.Conv2d(1056, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_double_3x3_reduce_bn = nn.BatchNorm2d(160, affine=True)
self.inception_5a_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_5a_double_3x3_1 = nn.Conv2d(160, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5a_double_3x3_1_bn = nn.BatchNorm2d(224, affine=True)
self.inception_5a_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_5a_double_3x3_2 = nn.Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5a_double_3x3_2_bn = nn.BatchNorm2d(224, affine=True)
self.inception_5a_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_5a_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_5a_pool_proj = nn.Conv2d(1056, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_pool_proj_bn = nn.BatchNorm2d(128, affine=True)
self.inception_5a_relu_pool_proj = nn.ReLU (inplace)
#开始inception1_5b
self.inception_5b_1x1 = nn.Conv2d(1024, 352, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_1x1_bn = nn.BatchNorm2d(352, affine=True)
self.inception_5b_relu_1x1 = nn.ReLU (inplace)
self.inception_5b_3x3_reduce = nn.Conv2d(1024, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_3x3_reduce_bn = nn.BatchNorm2d(192, affine=True)
self.inception_5b_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_5b_3x3 = nn.Conv2d(192, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5b_3x3_bn = nn.BatchNorm2d(320, affine=True)
self.inception_5b_relu_3x3 = nn.ReLU (inplace)
self.inception_5b_double_3x3_reduce = nn.Conv2d(1024, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_double_3x3_reduce_bn = nn.BatchNorm2d(192, affine=True)
self.inception_5b_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_5b_double_3x3_1 = nn.Conv2d(192, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5b_double_3x3_1_bn = nn.BatchNorm2d(224, affine=True)
self.inception_5b_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_5b_double_3x3_2 = nn.Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5b_double_3x3_2_bn = nn.BatchNorm2d(224, affine=True)
self.inception_5b_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_5b_pool = nn.MaxPool2d ((3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), ceil_mode=True)
self.inception_5b_pool_proj = nn.Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_pool_proj_bn = nn.BatchNorm2d(128, affine=True)
self.inception_5b_relu_pool_proj = nn.ReLU (inplace)
self.global_pool = nn.AvgPool2d (7, stride=1, padding=0, ceil_mode=True, count_include_pad=True) #最终的卷积层之后采用Global Average Pooling层,而不是全连接层,助于减少参数量
self.last_linear = nn.Linear (1024, num_classes)
def features(self, input):
conv1_7x7_s2_out = self.conv1_7x7_s2(input)
conv1_7x7_s2_bn_out = self.conv1_7x7_s2_bn(conv1_7x7_s2_out)
conv1_relu_7x7_out = self.conv1_relu_7x7(conv1_7x7_s2_bn_out)
pool1_3x3_s2_out = self.pool1_3x3_s2(conv1_relu_7x7_out)
conv2_3x3_reduce_out = self.conv2_3x3_reduce(pool1_3x3_s2_out)
conv2_3x3_reduce_bn_out = self.conv2_3x3_reduce_bn(conv2_3x3_reduce_out)
conv2_relu_3x3_reduce_out = self.conv2_relu_3x3_reduce(conv2_3x3_reduce_bn_out)
conv2_3x3_out = self.conv2_3x3(conv2_relu_3x3_reduce_out)
conv2_3x3_bn_out = self.conv2_3x3_bn(conv2_3x3_out)
conv2_relu_3x3_out = self.conv2_relu_3x3(conv2_3x3_bn_out)
pool2_3x3_s2_out = self.pool2_3x3_s2(conv2_relu_3x3_out)
inception_3a_1x1_out = self.inception_3a_1x1(pool2_3x3_s2_out)
inception_3a_1x1_bn_out = self.inception_3a_1x1_bn(inception_3a_1x1_out)
inception_3a_relu_1x1_out = self.inception_3a_relu_1x1(inception_3a_1x1_bn_out)
inception_3a_3x3_reduce_out = self.inception_3a_3x3_reduce(pool2_3x3_s2_out)
inception_3a_3x3_reduce_bn_out = self.inception_3a_3x3_reduce_bn(inception_3a_3x3_reduce_out)
inception_3a_relu_3x3_reduce_out = self.inception_3a_relu_3x3_reduce(inception_3a_3x3_reduce_bn_out)
inception_3a_3x3_out = self.inception_3a_3x3(inception_3a_relu_3x3_reduce_out)
inception_3a_3x3_bn_out = self.inception_3a_3x3_bn(inception_3a_3x3_out)
inception_3a_relu_3x3_out = self.inception_3a_relu_3x3(inception_3a_3x3_bn_out)
inception_3a_double_3x3_reduce_out = self.inception_3a_double_3x3_reduce(pool2_3x3_s2_out)
inception_3a_double_3x3_reduce_bn_out = self.inception_3a_double_3x3_reduce_bn(inception_3a_double_3x3_reduce_out)
inception_3a_relu_double_3x3_reduce_out = self.inception_3a_relu_double_3x3_reduce(inception_3a_double_3x3_reduce_bn_out)
inception_3a_double_3x3_1_out = self.inception_3a_double_3x3_1(inception_3a_relu_double_3x3_reduce_out)
inception_3a_double_3x3_1_bn_out = self.inception_3a_double_3x3_1_bn(inception_3a_double_3x3_1_out)
inception_3a_relu_double_3x3_1_out = self.inception_3a_relu_double_3x3_1(inception_3a_double_3x3_1_bn_out)
inception_3a_double_3x3_2_out = self.inception_3a_double_3x3_2(inception_3a_relu_double_3x3_1_out)
inception_3a_double_3x3_2_bn_out = self.inception_3a_double_3x3_2_bn(inception_3a_double_3x3_2_out)
inception_3a_relu_double_3x3_2_out = self.inception_3a_relu_double_3x3_2(inception_3a_double_3x3_2_bn_out)
inception_3a_pool_out = self.inception_3a_pool(pool2_3x3_s2_out)
inception_3a_pool_proj_out = self.inception_3a_pool_proj(inception_3a_pool_out)
inception_3a_pool_proj_bn_out = self.inception_3a_pool_proj_bn(inception_3a_pool_proj_out)
inception_3a_relu_pool_proj_out = self.inception_3a_relu_pool_proj(inception_3a_pool_proj_bn_out)
inception_3a_output_out = torch.cat([inception_3a_relu_1x1_out,inception_3a_relu_3x3_out,inception_3a_relu_double_3x3_2_out ,inception_3a_relu_pool_proj_out], 1)
inception_3b_1x1_out = self.inception_3b_1x1(inception_3a_output_out)
inception_3b_1x1_bn_out = self.inception_3b_1x1_bn(inception_3b_1x1_out)
inception_3b_relu_1x1_out = self.inception_3b_relu_1x1(inception_3b_1x1_bn_out)
inception_3b_3x3_reduce_out = self.inception_3b_3x3_reduce(inception_3a_output_out)
inception_3b_3x3_reduce_bn_out = self.inception_3b_3x3_reduce_bn(inception_3b_3x3_reduce_out)
inception_3b_relu_3x3_reduce_out = self.inception_3b_relu_3x3_reduce(inception_3b_3x3_reduce_bn_out)
inception_3b_3x3_out = self.inception_3b_3x3(inception_3b_relu_3x3_reduce_out)
inception_3b_3x3_bn_out = self.inception_3b_3x3_bn(inception_3b_3x3_out)
inception_3b_relu_3x3_out = self.inception_3b_relu_3x3(inception_3b_3x3_bn_out)
inception_3b_double_3x3_reduce_out = self.inception_3b_double_3x3_reduce(inception_3a_output_out)
inception_3b_double_3x3_reduce_bn_out = self.inception_3b_double_3x3_reduce_bn(inception_3b_double_3x3_reduce_out)
inception_3b_relu_double_3x3_reduce_out = self.inception_3b_relu_double_3x3_reduce(inception_3b_double_3x3_reduce_bn_out)
inception_3b_double_3x3_1_out = self.inception_3b_double_3x3_1(inception_3b_relu_double_3x3_reduce_out)
inception_3b_double_3x3_1_bn_out = self.inception_3b_double_3x3_1_bn(inception_3b_double_3x3_1_out)
inception_3b_relu_double_3x3_1_out = self.inception_3b_relu_double_3x3_1(inception_3b_double_3x3_1_bn_out)
inception_3b_double_3x3_2_out = self.inception_3b_double_3x3_2(inception_3b_relu_double_3x3_1_out)
inception_3b_double_3x3_2_bn_out = self.inception_3b_double_3x3_2_bn(inception_3b_double_3x3_2_out)
inception_3b_relu_double_3x3_2_out = self.inception_3b_relu_double_3x3_2(inception_3b_double_3x3_2_bn_out)
inception_3b_pool_out = self.inception_3b_pool(inception_3a_output_out)
inception_3b_pool_proj_out = self.inception_3b_pool_proj(inception_3b_pool_out)
inception_3b_pool_proj_bn_out = self.inception_3b_pool_proj_bn(inception_3b_pool_proj_out)
inception_3b_relu_pool_proj_out = self.inception_3b_relu_pool_proj(inception_3b_pool_proj_bn_out)
inception_3b_output_out = torch.cat([inception_3b_relu_1x1_out,inception_3b_relu_3x3_out,inception_3b_relu_double_3x3_2_out,inception_3b_relu_pool_proj_out], 1)
inception_3c_3x3_reduce_out = self.inception_3c_3x3_reduce(inception_3b_output_out)
inception_3c_3x3_reduce_bn_out = self.inception_3c_3x3_reduce_bn(inception_3c_3x3_reduce_out)
inception_3c_relu_3x3_reduce_out = self.inception_3c_relu_3x3_reduce(inception_3c_3x3_reduce_bn_out)
inception_3c_3x3_out = self.inception_3c_3x3(inception_3c_relu_3x3_reduce_out)
inception_3c_3x3_bn_out = self.inception_3c_3x3_bn(inception_3c_3x3_out)
inception_3c_relu_3x3_out = self.inception_3c_relu_3x3(inception_3c_3x3_bn_out)
inception_3c_double_3x3_reduce_out = self.inception_3c_double_3x3_reduce(inception_3b_output_out)
inception_3c_double_3x3_reduce_bn_out = self.inception_3c_double_3x3_reduce_bn(inception_3c_double_3x3_reduce_out)
inception_3c_relu_double_3x3_reduce_out = self.inception_3c_relu_double_3x3_reduce(inception_3c_double_3x3_reduce_bn_out)
inception_3c_double_3x3_1_out = self.inception_3c_double_3x3_1(inception_3c_relu_double_3x3_reduce_out)
inception_3c_double_3x3_1_bn_out = self.inception_3c_double_3x3_1_bn(inception_3c_double_3x3_1_out)
inception_3c_relu_double_3x3_1_out = self.inception_3c_relu_double_3x3_1(inception_3c_double_3x3_1_bn_out)
inception_3c_double_3x3_2_out = self.inception_3c_double_3x3_2(inception_3c_relu_double_3x3_1_out)
inception_3c_double_3x3_2_bn_out = self.inception_3c_double_3x3_2_bn(inception_3c_double_3x3_2_out)
inception_3c_relu_double_3x3_2_out = self.inception_3c_relu_double_3x3_2(inception_3c_double_3x3_2_bn_out)
inception_3c_pool_out = self.inception_3c_pool(inception_3b_output_out)
inception_3c_output_out = torch.cat([inception_3c_relu_3x3_out,inception_3c_relu_double_3x3_2_out,inception_3c_pool_out], 1)
inception_4a_1x1_out = self.inception_4a_1x1(inception_3c_output_out)
inception_4a_1x1_bn_out = self.inception_4a_1x1_bn(inception_4a_1x1_out)
inception_4a_relu_1x1_out = self.inception_4a_relu_1x1(inception_4a_1x1_bn_out)
inception_4a_3x3_reduce_out = self.inception_4a_3x3_reduce(inception_3c_output_out)
inception_4a_3x3_reduce_bn_out = self.inception_4a_3x3_reduce_bn(inception_4a_3x3_reduce_out)
inception_4a_relu_3x3_reduce_out = self.inception_4a_relu_3x3_reduce(inception_4a_3x3_reduce_bn_out)
inception_4a_3x3_out = self.inception_4a_3x3(inception_4a_relu_3x3_reduce_out)
inception_4a_3x3_bn_out = self.inception_4a_3x3_bn(inception_4a_3x3_out)
inception_4a_relu_3x3_out = self.inception_4a_relu_3x3(inception_4a_3x3_bn_out)
inception_4a_double_3x3_reduce_out = self.inception_4a_double_3x3_reduce(inception_3c_output_out)
inception_4a_double_3x3_reduce_bn_out = self.inception_4a_double_3x3_reduce_bn(inception_4a_double_3x3_reduce_out)
inception_4a_relu_double_3x3_reduce_out = self.inception_4a_relu_double_3x3_reduce(inception_4a_double_3x3_reduce_bn_out)
inception_4a_double_3x3_1_out = self.inception_4a_double_3x3_1(inception_4a_relu_double_3x3_reduce_out)
inception_4a_double_3x3_1_bn_out = self.inception_4a_double_3x3_1_bn(inception_4a_double_3x3_1_out)
inception_4a_relu_double_3x3_1_out = self.inception_4a_relu_double_3x3_1(inception_4a_double_3x3_1_bn_out)
inception_4a_double_3x3_2_out = self.inception_4a_double_3x3_2(inception_4a_relu_double_3x3_1_out)
inception_4a_double_3x3_2_bn_out = self.inception_4a_double_3x3_2_bn(inception_4a_double_3x3_2_out)
inception_4a_relu_double_3x3_2_out = self.inception_4a_relu_double_3x3_2(inception_4a_double_3x3_2_bn_out)
inception_4a_pool_out = self.inception_4a_pool(inception_3c_output_out)
inception_4a_pool_proj_out = self.inception_4a_pool_proj(inception_4a_pool_out)
inception_4a_pool_proj_bn_out = self.inception_4a_pool_proj_bn(inception_4a_pool_proj_out)
inception_4a_relu_pool_proj_out = self.inception_4a_relu_pool_proj(inception_4a_pool_proj_bn_out)
inception_4a_output_out = torch.cat([inception_4a_relu_1x1_out,inception_4a_relu_3x3_out,inception_4a_relu_double_3x3_2_out,inception_4a_relu_pool_proj_out], 1)
inception_4b_1x1_out = self.inception_4b_1x1(inception_4a_output_out)
inception_4b_1x1_bn_out = self.inception_4b_1x1_bn(inception_4b_1x1_out)
inception_4b_relu_1x1_out = self.inception_4b_relu_1x1(inception_4b_1x1_bn_out)
inception_4b_3x3_reduce_out = self.inception_4b_3x3_reduce(inception_4a_output_out)
inception_4b_3x3_reduce_bn_out = self.inception_4b_3x3_reduce_bn(inception_4b_3x3_reduce_out)
inception_4b_relu_3x3_reduce_out = self.inception_4b_relu_3x3_reduce(inception_4b_3x3_reduce_bn_out)
inception_4b_3x3_out = self.inception_4b_3x3(inception_4b_relu_3x3_reduce_out)
inception_4b_3x3_bn_out = self.inception_4b_3x3_bn(inception_4b_3x3_out)
inception_4b_relu_3x3_out = self.inception_4b_relu_3x3(inception_4b_3x3_bn_out)
inception_4b_double_3x3_reduce_out = self.inception_4b_double_3x3_reduce(inception_4a_output_out)
inception_4b_double_3x3_reduce_bn_out = self.inception_4b_double_3x3_reduce_bn(inception_4b_double_3x3_reduce_out)
inception_4b_relu_double_3x3_reduce_out = self.inception_4b_relu_double_3x3_reduce(inception_4b_double_3x3_reduce_bn_out)
inception_4b_double_3x3_1_out = self.inception_4b_double_3x3_1(inception_4b_relu_double_3x3_reduce_out)
inception_4b_double_3x3_1_bn_out = self.inception_4b_double_3x3_1_bn(inception_4b_double_3x3_1_out)
inception_4b_relu_double_3x3_1_out = self.inception_4b_relu_double_3x3_1(inception_4b_double_3x3_1_bn_out)
inception_4b_double_3x3_2_out = self.inception_4b_double_3x3_2(inception_4b_relu_double_3x3_1_out)
inception_4b_double_3x3_2_bn_out = self.inception_4b_double_3x3_2_bn(inception_4b_double_3x3_2_out)
inception_4b_relu_double_3x3_2_out = self.inception_4b_relu_double_3x3_2(inception_4b_double_3x3_2_bn_out)
inception_4b_pool_out = self.inception_4b_pool(inception_4a_output_out)
inception_4b_pool_proj_out = self.inception_4b_pool_proj(inception_4b_pool_out)
inception_4b_pool_proj_bn_out = self.inception_4b_pool_proj_bn(inception_4b_pool_proj_out)
inception_4b_relu_pool_proj_out = self.inception_4b_relu_pool_proj(inception_4b_pool_proj_bn_out)
inception_4b_output_out = torch.cat([inception_4b_relu_1x1_out,inception_4b_relu_3x3_out,inception_4b_relu_double_3x3_2_out,inception_4b_relu_pool_proj_out], 1)
inception_4c_1x1_out = self.inception_4c_1x1(inception_4b_output_out)
inception_4c_1x1_bn_out = self.inception_4c_1x1_bn(inception_4c_1x1_out)
inception_4c_relu_1x1_out = self.inception_4c_relu_1x1(inception_4c_1x1_bn_out)
inception_4c_3x3_reduce_out = self.inception_4c_3x3_reduce(inception_4b_output_out)
inception_4c_3x3_reduce_bn_out = self.inception_4c_3x3_reduce_bn(inception_4c_3x3_reduce_out)
inception_4c_relu_3x3_reduce_out = self.inception_4c_relu_3x3_reduce(inception_4c_3x3_reduce_bn_out)
inception_4c_3x3_out = self.inception_4c_3x3(inception_4c_relu_3x3_reduce_out)
inception_4c_3x3_bn_out = self.inception_4c_3x3_bn(inception_4c_3x3_out)
inception_4c_relu_3x3_out = self.inception_4c_relu_3x3(inception_4c_3x3_bn_out)
inception_4c_double_3x3_reduce_out = self.inception_4c_double_3x3_reduce(inception_4b_output_out)
inception_4c_double_3x3_reduce_bn_out = self.inception_4c_double_3x3_reduce_bn(inception_4c_double_3x3_reduce_out)
inception_4c_relu_double_3x3_reduce_out = self.inception_4c_relu_double_3x3_reduce(inception_4c_double_3x3_reduce_bn_out)
inception_4c_double_3x3_1_out = self.inception_4c_double_3x3_1(inception_4c_relu_double_3x3_reduce_out)
inception_4c_double_3x3_1_bn_out = self.inception_4c_double_3x3_1_bn(inception_4c_double_3x3_1_out)
inception_4c_relu_double_3x3_1_out = self.inception_4c_relu_double_3x3_1(inception_4c_double_3x3_1_bn_out)
inception_4c_double_3x3_2_out = self.inception_4c_double_3x3_2(inception_4c_relu_double_3x3_1_out)
inception_4c_double_3x3_2_bn_out = self.inception_4c_double_3x3_2_bn(inception_4c_double_3x3_2_out)
inception_4c_relu_double_3x3_2_out = self.inception_4c_relu_double_3x3_2(inception_4c_double_3x3_2_bn_out)
inception_4c_pool_out = self.inception_4c_pool(inception_4b_output_out)
inception_4c_pool_proj_out = self.inception_4c_pool_proj(inception_4c_pool_out)
inception_4c_pool_proj_bn_out = self.inception_4c_pool_proj_bn(inception_4c_pool_proj_out)
inception_4c_relu_pool_proj_out = self.inception_4c_relu_pool_proj(inception_4c_pool_proj_bn_out)
inception_4c_output_out = torch.cat([inception_4c_relu_1x1_out,inception_4c_relu_3x3_out,inception_4c_relu_double_3x3_2_out,inception_4c_relu_pool_proj_out], 1)
inception_4d_1x1_out = self.inception_4d_1x1(inception_4c_output_out)
inception_4d_1x1_bn_out = self.inception_4d_1x1_bn(inception_4d_1x1_out)
inception_4d_relu_1x1_out = self.inception_4d_relu_1x1(inception_4d_1x1_bn_out)
inception_4d_3x3_reduce_out = self.inception_4d_3x3_reduce(inception_4c_output_out)
inception_4d_3x3_reduce_bn_out = self.inception_4d_3x3_reduce_bn(inception_4d_3x3_reduce_out)
inception_4d_relu_3x3_reduce_out = self.inception_4d_relu_3x3_reduce(inception_4d_3x3_reduce_bn_out)
inception_4d_3x3_out = self.inception_4d_3x3(inception_4d_relu_3x3_reduce_out)
inception_4d_3x3_bn_out = self.inception_4d_3x3_bn(inception_4d_3x3_out)
inception_4d_relu_3x3_out = self.inception_4d_relu_3x3(inception_4d_3x3_bn_out)
inception_4d_double_3x3_reduce_out = self.inception_4d_double_3x3_reduce(inception_4c_output_out)
inception_4d_double_3x3_reduce_bn_out = self.inception_4d_double_3x3_reduce_bn(inception_4d_double_3x3_reduce_out)
inception_4d_relu_double_3x3_reduce_out = self.inception_4d_relu_double_3x3_reduce(inception_4d_double_3x3_reduce_bn_out)
inception_4d_double_3x3_1_out = self.inception_4d_double_3x3_1(inception_4d_relu_double_3x3_reduce_out)
inception_4d_double_3x3_1_bn_out = self.inception_4d_double_3x3_1_bn(inception_4d_double_3x3_1_out)
inception_4d_relu_double_3x3_1_out = self.inception_4d_relu_double_3x3_1(inception_4d_double_3x3_1_bn_out)
inception_4d_double_3x3_2_out = self.inception_4d_double_3x3_2(inception_4d_relu_double_3x3_1_out)
inception_4d_double_3x3_2_bn_out = self.inception_4d_double_3x3_2_bn(inception_4d_double_3x3_2_out)
inception_4d_relu_double_3x3_2_out = self.inception_4d_relu_double_3x3_2(inception_4d_double_3x3_2_bn_out)
inception_4d_pool_out = self.inception_4d_pool(inception_4c_output_out)
inception_4d_pool_proj_out = self.inception_4d_pool_proj(inception_4d_pool_out)
inception_4d_pool_proj_bn_out = self.inception_4d_pool_proj_bn(inception_4d_pool_proj_out)
inception_4d_relu_pool_proj_out = self.inception_4d_relu_pool_proj(inception_4d_pool_proj_bn_out)
inception_4d_output_out = torch.cat([inception_4d_relu_1x1_out,inception_4d_relu_3x3_out,inception_4d_relu_double_3x3_2_out,inception_4d_relu_pool_proj_out], 1)
inception_4e_3x3_reduce_out = self.inception_4e_3x3_reduce(inception_4d_output_out)
inception_4e_3x3_reduce_bn_out = self.inception_4e_3x3_reduce_bn(inception_4e_3x3_reduce_out)
inception_4e_relu_3x3_reduce_out = self.inception_4e_relu_3x3_reduce(inception_4e_3x3_reduce_bn_out)
inception_4e_3x3_out = self.inception_4e_3x3(inception_4e_relu_3x3_reduce_out)
inception_4e_3x3_bn_out = self.inception_4e_3x3_bn(inception_4e_3x3_out)
inception_4e_relu_3x3_out = self.inception_4e_relu_3x3(inception_4e_3x3_bn_out)
inception_4e_double_3x3_reduce_out = self.inception_4e_double_3x3_reduce(inception_4d_output_out)
inception_4e_double_3x3_reduce_bn_out = self.inception_4e_double_3x3_reduce_bn(inception_4e_double_3x3_reduce_out)
inception_4e_relu_double_3x3_reduce_out = self.inception_4e_relu_double_3x3_reduce(inception_4e_double_3x3_reduce_bn_out)
inception_4e_double_3x3_1_out = self.inception_4e_double_3x3_1(inception_4e_relu_double_3x3_reduce_out)
inception_4e_double_3x3_1_bn_out = self.inception_4e_double_3x3_1_bn(inception_4e_double_3x3_1_out)
inception_4e_relu_double_3x3_1_out = self.inception_4e_relu_double_3x3_1(inception_4e_double_3x3_1_bn_out)
inception_4e_double_3x3_2_out = self.inception_4e_double_3x3_2(inception_4e_relu_double_3x3_1_out)
inception_4e_double_3x3_2_bn_out = self.inception_4e_double_3x3_2_bn(inception_4e_double_3x3_2_out)
inception_4e_relu_double_3x3_2_out = self.inception_4e_relu_double_3x3_2(inception_4e_double_3x3_2_bn_out)
inception_4e_pool_out = self.inception_4e_pool(inception_4d_output_out)
inception_4e_output_out = torch.cat([inception_4e_relu_3x3_out,inception_4e_relu_double_3x3_2_out,inception_4e_pool_out], 1)
inception_5a_1x1_out = self.inception_5a_1x1(inception_4e_output_out)
inception_5a_1x1_bn_out = self.inception_5a_1x1_bn(inception_5a_1x1_out)
inception_5a_relu_1x1_out = self.inception_5a_relu_1x1(inception_5a_1x1_bn_out)
inception_5a_3x3_reduce_out = self.inception_5a_3x3_reduce(inception_4e_output_out)
inception_5a_3x3_reduce_bn_out = self.inception_5a_3x3_reduce_bn(inception_5a_3x3_reduce_out)
inception_5a_relu_3x3_reduce_out = self.inception_5a_relu_3x3_reduce(inception_5a_3x3_reduce_bn_out)
inception_5a_3x3_out = self.inception_5a_3x3(inception_5a_relu_3x3_reduce_out)
inception_5a_3x3_bn_out = self.inception_5a_3x3_bn(inception_5a_3x3_out)
inception_5a_relu_3x3_out = self.inception_5a_relu_3x3(inception_5a_3x3_bn_out)
inception_5a_double_3x3_reduce_out = self.inception_5a_double_3x3_reduce(inception_4e_output_out)
inception_5a_double_3x3_reduce_bn_out = self.inception_5a_double_3x3_reduce_bn(inception_5a_double_3x3_reduce_out)
inception_5a_relu_double_3x3_reduce_out = self.inception_5a_relu_double_3x3_reduce(inception_5a_double_3x3_reduce_bn_out)
inception_5a_double_3x3_1_out = self.inception_5a_double_3x3_1(inception_5a_relu_double_3x3_reduce_out)
inception_5a_double_3x3_1_bn_out = self.inception_5a_double_3x3_1_bn(inception_5a_double_3x3_1_out)
inception_5a_relu_double_3x3_1_out = self.inception_5a_relu_double_3x3_1(inception_5a_double_3x3_1_bn_out)
inception_5a_double_3x3_2_out = self.inception_5a_double_3x3_2(inception_5a_relu_double_3x3_1_out)
inception_5a_double_3x3_2_bn_out = self.inception_5a_double_3x3_2_bn(inception_5a_double_3x3_2_out)
inception_5a_relu_double_3x3_2_out = self.inception_5a_relu_double_3x3_2(inception_5a_double_3x3_2_bn_out)
inception_5a_pool_out = self.inception_5a_pool(inception_4e_output_out)
inception_5a_pool_proj_out = self.inception_5a_pool_proj(inception_5a_pool_out)
inception_5a_pool_proj_bn_out = self.inception_5a_pool_proj_bn(inception_5a_pool_proj_out)
inception_5a_relu_pool_proj_out = self.inception_5a_relu_pool_proj(inception_5a_pool_proj_bn_out)
inception_5a_output_out = torch.cat([inception_5a_relu_1x1_out,inception_5a_relu_3x3_out,inception_5a_relu_double_3x3_2_out,inception_5a_relu_pool_proj_out], 1)
inception_5b_1x1_out = self.inception_5b_1x1(inception_5a_output_out)
inception_5b_1x1_bn_out = self.inception_5b_1x1_bn(inception_5b_1x1_out)
inception_5b_relu_1x1_out = self.inception_5b_relu_1x1(inception_5b_1x1_bn_out)
inception_5b_3x3_reduce_out = self.inception_5b_3x3_reduce(inception_5a_output_out)
inception_5b_3x3_reduce_bn_out = self.inception_5b_3x3_reduce_bn(inception_5b_3x3_reduce_out)
inception_5b_relu_3x3_reduce_out = self.inception_5b_relu_3x3_reduce(inception_5b_3x3_reduce_bn_out)
inception_5b_3x3_out = self.inception_5b_3x3(inception_5b_relu_3x3_reduce_out)
inception_5b_3x3_bn_out = self.inception_5b_3x3_bn(inception_5b_3x3_out)
inception_5b_relu_3x3_out = self.inception_5b_relu_3x3(inception_5b_3x3_bn_out)
inception_5b_double_3x3_reduce_out = self.inception_5b_double_3x3_reduce(inception_5a_output_out)
inception_5b_double_3x3_reduce_bn_out = self.inception_5b_double_3x3_reduce_bn(inception_5b_double_3x3_reduce_out)
inception_5b_relu_double_3x3_reduce_out = self.inception_5b_relu_double_3x3_reduce(inception_5b_double_3x3_reduce_bn_out)
inception_5b_double_3x3_1_out = self.inception_5b_double_3x3_1(inception_5b_relu_double_3x3_reduce_out)
inception_5b_double_3x3_1_bn_out = self.inception_5b_double_3x3_1_bn(inception_5b_double_3x3_1_out)
inception_5b_relu_double_3x3_1_out = self.inception_5b_relu_double_3x3_1(inception_5b_double_3x3_1_bn_out)
inception_5b_double_3x3_2_out = self.inception_5b_double_3x3_2(inception_5b_relu_double_3x3_1_out)
inception_5b_double_3x3_2_bn_out = self.inception_5b_double_3x3_2_bn(inception_5b_double_3x3_2_out)
inception_5b_relu_double_3x3_2_out = self.inception_5b_relu_double_3x3_2(inception_5b_double_3x3_2_bn_out)
inception_5b_pool_out = self.inception_5b_pool(inception_5a_output_out)
inception_5b_pool_proj_out = self.inception_5b_pool_proj(inception_5b_pool_out)
inception_5b_pool_proj_bn_out = self.inception_5b_pool_proj_bn(inception_5b_pool_proj_out)
inception_5b_relu_pool_proj_out = self.inception_5b_relu_pool_proj(inception_5b_pool_proj_bn_out)
inception_5b_output_out = torch.cat([inception_5b_relu_1x1_out,inception_5b_relu_3x3_out,inception_5b_relu_double_3x3_2_out,inception_5b_relu_pool_proj_out], 1)
return inception_5b_output_out
def logits(self, features):
x = self.global_pool(features)
x = x.view(x.size(0), -1)
x = self.last_linear(x)
return x
def forward(self, input):
x = self.features(input)
x = self.logits(x)
return x
def bninception(num_classes=68, pretrained='imagenet'): #分类 num_classes=1000
r"""BNInception model architecture from <https://arxiv.org/pdf/1502.03167.pdf>`_ paper.
"""
model = BNInception(num_classes=num_classes)
if pretrained is not None:
settings = pretrained_settings['bninception'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
model.load_state_dict(model_zoo.load_url(settings['url']))
model.input_space = settings['input_space'] #'BGR'
model.input_size = settings['input_size'] #256
model.input_range = settings['input_range'] #[0, 255] 再bn
model.mean = settings['mean'] #[104, 117, 128], #均值像素
model.std = settings['std'] #[1, 1, 1], #方差
return model
if __name__ == '__main__':
model = bninception()