|
19 | 19 | import random
|
20 | 20 |
|
21 | 21 | t = []
|
22 |
| -t.append(transforms.Resize(1024, interpolation=Image.BICUBIC)) |
| 22 | +t.append(transforms.Resize((1024, 1024), interpolation=Image.BICUBIC)) |
23 | 23 | transform = transforms.Compose(t)
|
24 | 24 | #metadata = MetadataCatalog.get('coco_2017_train_panoptic')
|
25 | 25 | all_classes = ['background'] + [name.replace('-other','').replace('-merged','')
|
|
37 | 37 | @torch.no_grad()
|
38 | 38 | def interactive_infer_image(model, image, prompts):
|
39 | 39 |
|
40 |
| - image_ori = transform(image) |
41 |
| - #mask_ori = image['mask'] |
42 |
| - width = image_ori.size[0] |
43 |
| - height = image_ori.size[1] |
44 |
| - image_ori = np.asarray(image_ori) |
45 |
| - image = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda() |
| 40 | + image_resize = transform(image) |
| 41 | + width = image.size[0] |
| 42 | + height = image.size[1] |
| 43 | + image_resize = np.asarray(image_resize) |
| 44 | + image = torch.from_numpy(image_resize.copy()).permute(2,0,1).cuda() |
46 | 45 |
|
47 | 46 | data = {"image": image, 'text': prompts, "height": height, "width": width}
|
48 | 47 |
|
@@ -72,7 +71,8 @@ def interactive_infer_image(model, image, prompts):
|
72 | 71 | pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
73 | 72 |
|
74 | 73 | # interpolate mask to ori size
|
75 |
| - pred_mask_prob = F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy() |
| 74 | + pred_mask_prob = F.interpolate(pred_masks_pos[None,], (data['height'], data['width']), |
| 75 | + mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy() |
76 | 76 | pred_masks_pos = (1*(pred_mask_prob > 0.5)).astype(np.uint8)
|
77 | 77 |
|
78 | 78 | return pred_mask_prob
|
|
0 commit comments