forked from halide/Halide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlesson_05_scheduling_1.cpp
589 lines (504 loc) · 23.1 KB
/
lesson_05_scheduling_1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
// Halide tutorial lesson 5: Vectorize, parallelize, unroll and tile your code
// This lesson demonstrates how to manipulate the order in which you
// evaluate pixels in a Func, including vectorization,
// parallelization, unrolling, and tiling.
// On linux, you can compile and run it like so:
// g++ lesson_05*.cpp -g -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -lpthread -ldl -o lesson_05 -std=c++17
// LD_LIBRARY_PATH=<path/to/libHalide.so> ./lesson_05
// On os x:
// g++ lesson_05*.cpp -g -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -o lesson_05 -std=c++17
// DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> ./lesson_05
// If you have the entire Halide source tree, you can also build it by
// running:
// make tutorial_lesson_05_scheduling_1
// in a shell with the current directory at the top of the halide
// source tree.
#include "Halide.h"
#include <algorithm>
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
// We're going to define and schedule our gradient function in
// several different ways, and see what order pixels are computed
// in.
Var x("x"), y("y");
// First we observe the default ordering.
{
Func gradient("gradient");
gradient(x, y) = x + y;
gradient.trace_stores();
// By default we walk along the rows and then down the
// columns. This means x varies quickly, and y varies
// slowly. x is the column and y is the row, so this is a
// row-major traversal.
printf("Evaluating gradient row-major\n");
Buffer<int> output = gradient.realize({4, 4});
// See figures/lesson_05_row_major.gif for a visualization of
// what this did.
// The equivalent C is:
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
printf("\n\n");
// Tracing is one useful way to understand what a schedule is
// doing. You can also ask Halide to print out pseudocode
// showing what loops Halide is generating:
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
// Because we're using the default ordering, it should print:
// compute gradient:
// for y:
// for x:
// gradient(...) = ...
}
// Reorder variables.
{
Func gradient("gradient_col_major");
gradient(x, y) = x + y;
gradient.trace_stores();
// If we reorder x and y, we can walk down the columns
// instead. The reorder call takes the arguments of the func,
// and sets a new nesting order for the for loops that are
// generated. The arguments are specified from the innermost
// loop out, so the following call puts y in the inner loop:
gradient.reorder(y, x);
// This means y (the row) will vary quickly, and x (the
// column) will vary slowly, so this is a column-major
// traversal.
printf("Evaluating gradient column-major\n");
Buffer<int> output = gradient.realize({4, 4});
// See figures/lesson_05_col_major.gif for a visualization of
// what this did.
printf("Equivalent C:\n");
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
printf("\n");
// If we print pseudo-code for this schedule, we'll see that
// the loop over y is now inside the loop over x.
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Split a variable into two.
{
Func gradient("gradient_split");
gradient(x, y) = x + y;
gradient.trace_stores();
// The most powerful primitive scheduling operation you can do
// to a var is to split it into inner and outer sub-variables:
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);
// This breaks the loop over x into two nested loops: an outer
// one over x_outer, and an inner one over x_inner. The last
// argument to split was the "split factor". The inner loop
// runs from zero to the split factor. The outer loop runs
// from zero to the extent required of x (4 in this case)
// divided by the split factor. Within the loops, the old
// variable is defined to be outer * factor + inner. If the
// old loop started at a value other than zero, then that is
// also added within the loops.
printf("Evaluating gradient with x split into x_outer and x_inner \n");
Buffer<int> output = gradient.realize({4, 4});
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
for (int x_inner = 0; x_inner < 2; x_inner++) {
int x = x_outer * 2 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
// Note that the order of evaluation of pixels didn't actually
// change! Splitting by itself does nothing, but it does open
// up all of the scheduling possibilities that we will explore
// below.
}
// Fuse two variables into one.
{
Func gradient("gradient_fused");
gradient(x, y) = x + y;
// The opposite of splitting is 'fusing'. Fusing two variables
// merges the two loops into a single for loop over the
// product of the extents. Fusing is less important than
// splitting, but it also sees use (as we'll see later in this
// lesson). Like splitting, fusing by itself doesn't change
// the order of evaluation.
Var fused;
gradient.fuse(x, y, fused);
printf("Evaluating gradient with x and y fused\n");
Buffer<int> output = gradient.realize({4, 4});
printf("Equivalent C:\n");
for (int fused = 0; fused < 4 * 4; fused++) {
int y = fused / 4;
int x = fused % 4;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Evaluating in tiles.
{
Func gradient("gradient_tiled");
gradient(x, y) = x + y;
gradient.trace_stores();
// Now that we can both split and reorder, we can do tiled
// evaluation. Let's split both x and y by a factor of four,
// and then reorder the vars to express a tiled traversal.
//
// A tiled traversal splits the domain into small rectangular
// tiles, and outermost iterates over the tiles, and within
// that iterates over the points within each tile. It can be
// good for performance if neighboring pixels use overlapping
// input data, for example in a blur. We can express a tiled
// traversal like so:
Var x_outer, x_inner, y_outer, y_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.split(y, y_outer, y_inner, 4);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);
// This pattern is common enough that there's a shorthand for it:
// gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
printf("Evaluating gradient in 4x4 tiles\n");
Buffer<int> output = gradient.realize({8, 8});
// See figures/lesson_05_tiled.gif for a visualization of this
// schedule.
printf("Equivalent C:\n");
for (int y_outer = 0; y_outer < 2; y_outer++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
for (int y_inner = 0; y_inner < 4; y_inner++) {
for (int x_inner = 0; x_inner < 4; x_inner++) {
int x = x_outer * 4 + x_inner;
int y = y_outer * 4 + y_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Evaluating in vectors.
{
Func gradient("gradient_in_vectors");
gradient(x, y) = x + y;
gradient.trace_stores();
// The nice thing about splitting is that it guarantees the
// inner variable runs from zero to the split factor. Most of
// the time the split-factor will be a compile-time constant,
// so we can replace the loop over the inner variable with a
// single vectorized computation. This time we'll split by a
// factor of four, because on X86 we can use SSE to compute in
// 4-wide vectors.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.vectorize(x_inner);
// Splitting and then vectorizing the inner variable is common
// enough that there's a short-hand for it. We could have also
// said:
//
// gradient.vectorize(x, 4);
//
// which is equivalent to:
//
// gradient.split(x, x, x_inner, 4);
// gradient.vectorize(x_inner);
//
// Note that in this case we reused the name 'x' as the new
// outer variable. Later scheduling calls that refer to x
// will refer to this new outer variable named x.
// This time we'll evaluate over an 8x4 box, so that we have
// more than one vector of work per scanline.
printf("Evaluating gradient with x_inner vectorized \n");
Buffer<int> output = gradient.realize({8, 4});
// See figures/lesson_05_vectors.gif for a visualization.
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
// The loop over x_inner has gone away, and has been
// replaced by a vectorized version of the
// expression. On x86 processors, Halide generates SSE
// for all of this.
int x_vec[] = {x_outer * 4 + 0,
x_outer * 4 + 1,
x_outer * 4 + 2,
x_outer * 4 + 3};
int val[] = {x_vec[0] + y,
x_vec[1] + y,
x_vec[2] + y,
x_vec[3] + y};
printf("Evaluating at <%d, %d, %d, %d>, <%d, %d, %d, %d>:"
" <%d, %d, %d, %d>\n",
x_vec[0], x_vec[1], x_vec[2], x_vec[3],
y, y, y, y,
val[0], val[1], val[2], val[3]);
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Unrolling a loop.
{
Func gradient("gradient_unroll");
gradient(x, y) = x + y;
gradient.trace_stores();
// If multiple pixels share overlapping data, it can make
// sense to unroll a computation so that shared values are
// only computed or loaded once. We do this similarly to how
// we expressed vectorizing. We split a dimension and then
// fully unroll the loop of the inner variable. Unrolling
// doesn't change the order in which things are evaluated.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);
gradient.unroll(x_inner);
// The shorthand for this is:
// gradient.unroll(x, 2);
printf("Evaluating gradient unrolled by a factor of two\n");
Buffer<int> result = gradient.realize({4, 4});
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
// Instead of a for loop over x_inner, we get two
// copies of the innermost statement.
{
int x_inner = 0;
int x = x_outer * 2 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
{
int x_inner = 1;
int x = x_outer * 2 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Splitting by factors that don't divide the extent.
{
Func gradient("gradient_split_7x2");
gradient(x, y) = x + y;
gradient.trace_stores();
// Splitting guarantees that the inner loop runs from zero to
// the split factor, which is important for the uses we saw
// above. So what happens when the total extent we wish to
// evaluate x over isn't a multiple of the split factor? We'll
// split by a factor three, and we'll evaluate gradient over a
// 7x2 box instead of the 4x4 box we've been using.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 3);
printf("Evaluating gradient over a 7x2 box with x split by three \n");
Buffer<int> output = gradient.realize({7, 2});
// See figures/lesson_05_split_7_by_3.gif for a visualization
// of what happened. Note that some points get evaluated more
// than once!
printf("Equivalent C:\n");
for (int y = 0; y < 2; y++) {
for (int x_outer = 0; x_outer < 3; x_outer++) { // Now runs from 0 to 2
for (int x_inner = 0; x_inner < 3; x_inner++) {
int x = x_outer * 3;
// Before we add x_inner, make sure we don't
// evaluate points outside of the 7x2 box. We'll
// clamp x to be at most 4 (7 minus the split
// factor).
if (x > 4) x = 4;
x += x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
// If you read the output, you'll see that some coordinates
// were evaluated more than once. That's generally OK, because
// pure Halide functions have no side-effects, so it's safe to
// evaluate the same point multiple times. If you're calling
// out to C functions like we are, it's your responsibility to
// make sure you can handle the same point being evaluated
// multiple times.
// The general rule is: If we require x from x_min to x_min + x_extent, and
// we split by a factor 'factor', then:
//
// x_outer runs from 0 to (x_extent + factor - 1)/factor
// x_inner runs from 0 to factor
// x = min(x_outer * factor, x_extent - factor) + x_inner + x_min
//
// In our example, x_min was 0, x_extent was 7, and factor was 3.
// However, if you write a Halide function with an update
// definition (see lesson 9), then it is not safe to evaluate
// the same point multiple times, so we won't apply this
// trick. Instead the range of values computed will be rounded
// up to the next multiple of the split factor.
}
// Fusing, tiling, and parallelizing.
{
// We saw in the previous lesson that we can parallelize
// across a variable. Here we combine it with fusing and
// tiling to express a useful pattern - processing tiles in
// parallel.
// This is where fusing shines. Fusing helps when you want to
// parallelize across multiple dimensions without introducing
// nested parallelism. Nested parallelism (parallel for loops
// within parallel for loops) is supported by Halide, but
// often gives poor performance compared to fusing the
// parallel variables into a single parallel for loop.
Func gradient("gradient_fused_tiles");
gradient(x, y) = x + y;
gradient.trace_stores();
// First we'll tile, then we'll fuse the tile indices and
// parallelize across the combination.
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
gradient.fuse(x_outer, y_outer, tile_index);
gradient.parallel(tile_index);
// The scheduling calls all return a reference to the Func, so
// you can also chain them together into a single statement to
// make things slightly clearer:
//
// gradient
// .tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4)
// .fuse(x_outer, y_outer, tile_index)
// .parallel(tile_index);
printf("Evaluating gradient tiles in parallel\n");
Buffer<int> output = gradient.realize({8, 8});
// The tiles should occur in arbitrary order, but within each
// tile the pixels will be traversed in row-major order. See
// figures/lesson_05_parallel_tiles.gif for a visualization.
printf("Equivalent (serial) C:\n");
// This outermost loop should be a parallel for loop, but that's hard in C.
for (int tile_index = 0; tile_index < 4; tile_index++) {
int y_outer = tile_index / 2;
int x_outer = tile_index % 2;
for (int y_inner = 0; y_inner < 4; y_inner++) {
for (int x_inner = 0; x_inner < 4; x_inner++) {
int y = y_outer * 4 + y_inner;
int x = x_outer * 4 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Putting it all together.
{
// Are you ready? We're going to use all of the features above now.
Func gradient_fast("gradient_fast");
gradient_fast(x, y) = x + y;
// We'll process 64x64 tiles in parallel.
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient_fast
.tile(x, y, x_outer, y_outer, x_inner, y_inner, 64, 64)
.fuse(x_outer, y_outer, tile_index)
.parallel(tile_index);
// We'll compute two scanlines at once while we walk across
// each tile. We'll also vectorize in x. The easiest way to
// express this is to recursively tile again within each tile
// into 4x2 subtiles, then vectorize the subtiles across x and
// unroll them across y:
Var x_inner_outer, y_inner_outer, x_vectors, y_pairs;
gradient_fast
.tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)
.vectorize(x_vectors)
.unroll(y_pairs);
// Note that we didn't do any explicit splitting or
// reordering. Those are the most important primitive
// operations, but mostly they are buried underneath tiling,
// vectorizing, or unrolling calls.
// Now let's evaluate this over a range which is not a
// multiple of the tile size.
// If you like you can turn on tracing, but it's going to
// produce a lot of printfs. Instead we'll compute the answer
// both in C and Halide and see if the answers match.
Buffer<int> result = gradient_fast.realize({350, 250});
// See figures/lesson_05_fast.mp4 for a visualization.
printf("Checking Halide result against equivalent C...\n");
for (int tile_index = 0; tile_index < 6 * 4; tile_index++) {
int y_outer = tile_index / 4;
int x_outer = tile_index % 4;
for (int y_inner_outer = 0; y_inner_outer < 64 / 2; y_inner_outer++) {
for (int x_inner_outer = 0; x_inner_outer < 64 / 4; x_inner_outer++) {
// We're vectorized across x
int x = std::min(x_outer * 64, 350 - 64) + x_inner_outer * 4;
int x_vec[4] = {x + 0,
x + 1,
x + 2,
x + 3};
// And we unrolled across y
int y_base = std::min(y_outer * 64, 250 - 64) + y_inner_outer * 2;
{
// y_pairs = 0
int y = y_base + 0;
int y_vec[4] = {y, y, y, y};
int val[4] = {x_vec[0] + y_vec[0],
x_vec[1] + y_vec[1],
x_vec[2] + y_vec[2],
x_vec[3] + y_vec[3]};
// Check the result.
for (int i = 0; i < 4; i++) {
if (result(x_vec[i], y_vec[i]) != val[i]) {
printf("There was an error at %d %d!\n",
x_vec[i], y_vec[i]);
return -1;
}
}
}
{
// y_pairs = 1
int y = y_base + 1;
int y_vec[4] = {y, y, y, y};
int val[4] = {x_vec[0] + y_vec[0],
x_vec[1] + y_vec[1],
x_vec[2] + y_vec[2],
x_vec[3] + y_vec[3]};
// Check the result.
for (int i = 0; i < 4; i++) {
if (result(x_vec[i], y_vec[i]) != val[i]) {
printf("There was an error at %d %d!\n",
x_vec[i], y_vec[i]);
return -1;
}
}
}
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient_fast.print_loop_nest();
printf("\n");
// Note that in the Halide version, the algorithm is specified
// once at the top, separately from the optimizations, and there
// aren't that many lines of code total. Compare this to the C
// version. There's more code (and it isn't even parallelized or
// vectorized properly). More annoyingly, the statement of the
// algorithm (the result is x plus y) is buried in multiple places
// within the mess. This C code is hard to write, hard to read,
// hard to debug, and hard to optimize further. This is why Halide
// exists.
}
printf("Success!\n");
return 0;
}