Skip to content

mingsjtu/Human-Action-Recognition-from-Skeleton-Data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Human-Action-Recognition-from-Skeleton-Data

A Simple But High-accuracy LSTM for human Action Recognition

Code structure

  • matlab_m/: transform the given dataset(NTU RGB+D) to your need , from ".skeleton" to ".mat"

    • demo.m: an example for you to transform the dataset using the given functions .You shall verify the "fileFolder","dirOutput",and "savepath"
    • classfile.m: divide the "*.mat" file according to their class.
    • read_skeleton_file.m: a function to read the skeleton files (given by NTU RGB dataset)
    • savetomat.m: a function to save the skeleton data from skeleton files to mat files
    • show_skeleton_on_depthmaps.m: a function to show the skeleton information on the depthmaps(thanks to the NTU RGB+D dataset)
    • show_skeleton_on_IR_frames.m: a function to show the skeleton information on the IR frames(thanks to the NTU RGB+D dataset)
    • show_skeleton_on_RGB_frames.m: a function to show the skeleton information on the RGB frames(thanks to the NTU RGB+D dataset)
  • lstm_py/: the train and test python file using tensorflow lib.

    • main.py: the train python file using tensorflow.
    • evaluate.py: the test file to evaluate your model perfermance.
    • mtop.py: transform the skeleton files form ".mat" to ".npy" for python files . Also, you may use it for seperate train and test set .
    • model_lstm/: well-trained model of lstm .
  • keras: the train and test python file using keras lib.

    • main.py: an example for you to transform the dataset using the given functions .You shall verify the "train_file", and "test_file"

      Requirements

  • code only tested on linux system (ubuntu 16.04)

  • Python 3 (Anaconda 3.6.3 specifically) with numpy and matplotlib

  • Tensorflow

  • keras

  • matlab

    model structure

    model

    To prepare using the given data by NTU RGB+D

    Using matlab (from ".skeleton" to ".mat")

    In file demo.m

    fileFolder=['D:\research\ntuRGB\ske_f\',num2str(t),'\'];%using your own dataset path
    savepath=['D:\research\ntuRGB\mat_f\',num2str(t),'\'];%using your own save path

    In file classfile.m

    SOURCE_PATH_t =[ 'D:\research\ntuRGB\mat_f\',num2str(i),'\'];%using your own "*.mat" files path  
    DST_PATH_t1 = [ 'D:\research\ntuRGB\mat_f\',num2str(i),'\test'];%using your own wanted test set saved path
    DST_PATH_t2 = [ 'D:\research\ntuRGB\mat_f\',num2str(i),'\train'];%using your own wanted train set saved path
    matlab demo.m
    matlab classfile.m

    Using python (from ".mat" to ".npy")

    In file mtop.py

    trainpath='./CS/train/'#verify your train data files forder here ("*.mat" file)
    testpath='./CS/test/'#verify your test data files forder here ("*.mat" file)

    Using Tensorflow

    To train

    In file main.py

    train_file='CV_20/train' #verify your train data files forder here
     test_file='CV_20/test' #verify your train data files forder here
     model_file="model/my-model.meta"#verify your train model data file
    model_path="model/"#verify your train model data folder
python lstm_py/main.py
  • you will get your own model saved in the "model/"

    To test

    In file evaluate.py

    train_file='CV_20/train' #verify your train data files forder here
     test_file='CV_20/test' #verify your train data files forder here
     model_file="model/my-model.meta"#verify your train model data file
    model_path="model/"#verify your train model data folder
python lstm_py/evaluate.py

Using keras

To train and test

In file main.py

train_file='CV_20/train' #verify your train data files forder here 
test_file='CV_20/test' #verify your train data files forder here 
model_file="model/my-model.meta"#verify your train model data file
model_path="model/"#verify your train model data folder
python keras/main.py

About

A Simple But High-accuracy LSTM for human Action Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published