forked from mit-pdos/perennial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQextra.v
281 lines (261 loc) · 7.57 KB
/
Qextra.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
Require Import Qcanon ssreflect.
From stdpp Require Import numbers.
Require Import Psatz.
Require Import QArith.
Local Open Scope Q_scope.
(*
Definition Qp_of_Zp (z : Z) (Hpos : (0 < z)%Z) : Qp.
Proof.
refine (mk_Qp (Qc_of_Z z) _).
rewrite -Z2Qc_inj_0.
rewrite -Z2Qc_inj_lt.
auto.
Qed.
*)
Definition Qp_of_Z (z : Z) : Qp.
Proof.
refine (mk_Qp (Qc_of_Z (1 `max` z)) _).
abstract (rewrite -Z2Qc_inj_0 -Z2Qc_inj_lt; lia).
Defined.
Lemma Qp_of_Z_add (z1 z2 : Z) :
(0 < z1)%Z →
(0 < z2)%Z →
Qp_of_Z (z1 + z2)%Z =
Qp.add (Qp_of_Z z1) (Qp_of_Z z2).
Proof.
intros Hpos1 Hpos2.
rewrite /Qp_of_Z //=.
apply Qp.to_Qc_inj_iff => //=.
rewrite -Z2Qc_inj_add.
f_equal. lia.
Qed.
Fixpoint Qppower (q: Qp) (n: nat) :=
match n with
| O => 1%Qp
| S n' => (q * (Qppower q n'))%Qp
end.
Lemma Qp_min_glb1_lt (q q1 q2 : Qp) :
(q < q1 → q < q2 → q < q1 `min` q2)%Qp.
Proof.
intros Hlt1 Hlt2.
destruct (Qp.min_spec_le q1 q2) as [(?&->)|(?&->)]; auto.
Qed.
Lemma Qp_split_lt (q1 q2: Qp) :
(q1<q2)%Qp ->
∃ q', (q1 + q' = q2)%Qp.
Proof.
rewrite Qp.lt_sum.
intros [r EQ]. exists r. done.
Qed.
Lemma Qp_split_1 (q: Qp) :
(q<1)%Qp ->
∃ q', (q + q' = 1)%Qp.
Proof. intros. by eapply Qp_split_lt. Qed.
Theorem Qp_div_2_lt (q: Qp) : (q/2 < q)%Qp.
Proof.
apply Qp.lt_sum. exists (q/2)%Qp.
rewrite Qp.div_2. done.
Qed.
Require Import Lqa.
Require Import Lra.
Require Import QArith.
Require Import Reals.
Lemma rhelper1 (q : R) :
(/ 2 < q)%R →
(q < 1)%R →
(1 < q + (1 - q + (q + / 2 - 1) / 2))%R.
Proof. lra. Qed.
Lemma rhelper2 (r : R) :
(/ 2 < r)%R →
(r < 1)%R →
(0 < 1 + - r + (r + / 2 - 1) / 2)%R.
Proof. lra. Qed.
Lemma rhelper3 (r : R) :
(/ 2 < r)%R →
(r < 1)%R →
(0 < / 2 + - (1 + - r + (r + / 2 - 1) / 2))%R.
Proof. lra. Qed.
Lemma R_plus_inv_2_gt_1_split q:
((/2 < q)%R → ∃ q1 q2, 0 < q1 ∧ 0 < q2 ∧ (q1 + q2)%R = /2 ∧ 1 < q + q1)%R.
Proof.
intros Hlt.
assert (q < 1 ∨ 1 <= q)%R as [Hle|Hgt].
{ lra. }
- set (q1 := ((1 - q)%R + ((q + /2) - 1)/2)%R).
set (q2 := (/2 - q1)%R).
exists q1, q2. split_and!.
* rewrite /q1. lra.
* rewrite /q2/q1. lra.
* assert (1 - q < /2)%R.
{ lra. }
rewrite /q2/q1.
lra.
* rewrite /q1. clear q1 q2. apply rhelper1; auto.
- exists (/4)%R, (/4)%R.
split; lra.
Qed.
Require Import Lqa.
Lemma Q_plus_inv_2_gt_1_split q:
((/2 < q)%Q → ∃ q1 q2, 0 < q1 ∧ 0 < q2 ∧ Qred (q1 + q2)%Q = Qred (/2) ∧ 1 < q + q1)%Q.
Proof.
intros Hlt.
assert (q < 1 ∨ 1 <= q)%Q as [Hle|Hgt].
{ lra. }
- set (q1 := ((1 - q)%Q + ((q + /2) - 1)/2)%Q).
set (q2 := (/2 - q1)%Q).
exists q1, q2. split_and!.
* rewrite /q1.
apply Qreals.Rlt_Qlt.
repeat (rewrite ?Qreals.Q2R_plus ?Qreals.Q2R_inv ?Qreals.Q2R_opp
?Qreals.Q2R_div ?Qreals.Q2R_minus);
try (by inversion 1).
rewrite RMicromega.Q2R_0.
rewrite RMicromega.Q2R_1.
assert (Q2R 2 = 2%R) as Heq2.
{ replace 2%Q with (1 + 1)%Q by auto.
rewrite ?Qreals.Q2R_plus.
rewrite RMicromega.Q2R_1; auto with *. }
rewrite ?Heq2.
apply rhelper2.
{ rewrite -Heq2. rewrite -Qreals.Q2R_inv; first by inversion 1.
apply Qreals.Qlt_Rlt. auto. }
{ rewrite -RMicromega.Q2R_1.
apply Qreals.Qlt_Rlt. auto. }
* rewrite /q2/q1.
apply Qreals.Rlt_Qlt.
repeat (rewrite ?Qreals.Q2R_plus ?Qreals.Q2R_inv ?Qreals.Q2R_opp
?Qreals.Q2R_div ?Qreals.Q2R_minus);
try (by inversion 1).
rewrite RMicromega.Q2R_0.
rewrite RMicromega.Q2R_1.
assert (Q2R 2 = 2%R) as Heq2.
{ replace 2%Q with (1 + 1)%Q by auto.
rewrite ?Qreals.Q2R_plus.
rewrite RMicromega.Q2R_1; auto with *. }
rewrite ?Heq2.
apply rhelper3.
{ rewrite -Heq2. rewrite -Qreals.Q2R_inv; first by inversion 1.
apply Qreals.Qlt_Rlt. auto. }
{ rewrite -RMicromega.Q2R_1.
apply Qreals.Qlt_Rlt. auto. }
* apply Qred_complete.
apply Qreals.eqR_Qeq. rewrite /q2/q1.
repeat (rewrite ?Qreals.Q2R_plus ?Qreals.Q2R_inv ?Qreals.Q2R_opp
?Qreals.Q2R_div ?Qreals.Q2R_minus);
try (by inversion 1).
rewrite RMicromega.Q2R_1.
assert (Q2R 2 = 2%R) as ->.
{ replace 2%Q with (1 + 1)%Q by auto.
rewrite ?Qreals.Q2R_plus.
rewrite RMicromega.Q2R_1; auto with *. }
generalize (Q2R q). clear.
intros. field.
* rewrite /q1.
apply Qreals.Rlt_Qlt.
repeat (rewrite ?Qreals.Q2R_plus ?Qreals.Q2R_inv ?Qreals.Q2R_opp
?Qreals.Q2R_div ?Qreals.Q2R_minus);
try (by inversion 1).
rewrite RMicromega.Q2R_1.
assert (Q2R 2 = 2%R) as Heq2.
{ replace 2%Q with (1 + 1)%Q by auto.
rewrite ?Qreals.Q2R_plus.
rewrite RMicromega.Q2R_1; auto with *. }
rewrite ?Heq2.
apply rhelper1.
{ rewrite -Heq2. rewrite -Qreals.Q2R_inv; first by inversion 1.
apply Qreals.Qlt_Rlt. auto. }
{ rewrite -RMicromega.Q2R_1.
apply Qreals.Qlt_Rlt. auto. }
- exists (/4)%Q, (/4)%Q.
split_and!; try constructor.
* apply (Qle_lt_trans _ (1 + 0)).
{ eauto with *. }
rewrite Qplus_comm.
rewrite (Qplus_comm q).
apply Qplus_lt_le_compat; auto.
constructor.
Qed.
Lemma Qp_plus_inv_2_gt_1_split q:
((/2 < q)%Qp → ∃ q1 q2, q1 + q2 = /2 ∧ 1 < q + q1)%Qp.
Proof.
intros. destruct q as (q&Hpos). destruct q as (q&Hcanon).
edestruct (Q_plus_inv_2_gt_1_split q) as (q1&q2&?&?&?&?).
{ eauto with *. }
unshelve (eexists _).
{ unshelve (econstructor).
- apply (Qcanon.Q2Qc q1).
- apply Qred_lt; auto.
}
unshelve (eexists _).
{ unshelve (econstructor).
- apply (Qcanon.Q2Qc q2).
- apply Qred_lt; auto.
}
rewrite //=.
split.
- rewrite /Qp.add//=.
apply Qp.to_Qc_inj_iff.
rewrite /Qcanon.Qcplus//=.
apply Qcanon.Q2Qc_eq_iff.
transitivity (Qplus' q1 q2).
{ rewrite Qplus'_correct.
apply Qplus_comp; apply Qred_correct. }
{ rewrite /Qplus'. rewrite H2. constructor. }
- rewrite /Qcanon.Qclt => //=.
rewrite ?Qred_correct; auto.
Qed.
Local Open Scope Qp.
Lemma Qp_add_cancel (p q r : Qp) :
p + q = p + r →
q = r.
Proof.
intros Heq.
apply (anti_symm (≤)%Qp).
- rewrite (Qp.add_le_mono_l _ _ p). rewrite Heq. eauto.
- rewrite (Qp.add_le_mono_l _ _ p). rewrite Heq. eauto.
Qed.
Lemma Qp_plus_split_alt (q1 q2 : Qp) :
((/2 < q1 < q2) →
(q2 ≤ 1) →
∃ qa qb,
qa + qa + qb = 1 ∧
1 < q2 + qa ∧
q1 ≤ qa + qb)%Qp.
Proof.
intros Hrange1 Hrange2.
assert (q1 < 1)%Qp as Hlt1.
{ eapply Qp.lt_le_trans; try eassumption. naive_solver. }
apply (Qp_split_1) in Hlt1 as (qa&Heq).
assert (∃ qb, (qa + qa) + qb = 1) as (qb&Heq_qb).
{ apply Qp_split_1.
cut (qa < /2).
{ intros. rewrite -Qp.inv_half_half. apply Qp.add_lt_mono; auto. }
apply Qp.lt_nge. intros Hge.
assert (Hfalse: 1 < q1 + qa).
{ rewrite -Qp.inv_half_half.
destruct Hrange1 as (Hlt1&Hlt2).
eapply Qp.lt_le_trans.
{ apply Qp.add_lt_mono_r; (try eassumption). }
apply Qp.add_le_mono_l. auto. }
rewrite Heq in Hfalse.
apply Qp.lt_nge in Hfalse. apply Hfalse. eauto.
}
exists qa, qb.
split_and!; try eauto.
* rewrite -Heq. apply Qp.add_lt_mono_r. naive_solver.
* rewrite -Heq in Heq_qb.
rewrite (comm _ q1 qa) in Heq_qb.
rewrite -assoc in Heq_qb.
apply Qp_add_cancel in Heq_qb.
rewrite -Heq_qb //.
Qed.
Lemma Qp_lt_densely_ordered (q1 q2 : Qp) :
q1 < q2 →
∃ q, (q1 < q < q2).
Proof.
intros (r&Heq)%Qp_split_lt.
exists (q1 + (r/2)). split.
- apply Qp.lt_add_l.
- rewrite -Heq.
apply Qp.add_lt_mono_l. apply Qp_div_2_lt.
Qed.