Skip to content

Latest commit

 

History

History

SAE

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Running the code

Train

python sae/sae_gzsl.py -data AWA2/AWA1/CUB/SUN/APY -mode train -ld1 [LOWER BOUND OF VARIATION] -ld2 [UPPER BOUND OF VARIATION]

For testing, set mode to test and set ld1 (F->S) and ld2 (S->F) to the best values from the tables below.

Results

The numbers below are class-averaged top-1 accuracies (see ZSLGBU paper for details).

Classical ZSL

Dataset ZSLGBU Results Repository Results
F->S (W) Lambda S->F (W.T) Lambda
CUB 33.3 39.48 100 46.70 0.2
AWA1 53.0 51.34 3.0 59.89 0.8
AWA2 54.1 51.66 0.6 60.51 0.2
aPY 8.3 16.07 2.0 16.50 4.0
SUN 40.3 52.85 0.32 59.86 0.16

Generalized ZSL

Dataset ZSLGBU Results Repository Results
F->S (W) Lambda S->F (W.T) Lambda
U S H U S H U S H
CUB 7.8 54.0 13.6 13.86 49.88 21.69 80 15.72 57.02 24.64 0.2
AWA1 1.8 77.1 3.5 5.29 80.52 9.92 3.2 14.72 82.93 25.0 0.8
AWA2 1.1 82.2 2.2 5.0 81.42 9.42 0.8 12.86 87.20 22.41 0.2
aPY 0.4 80.9 0.9 8.28 27.97 12.77 0.16 9.48 56.62 16.24 2.56
SUN 8.8 18.0 11.8 16.81 24.69 20.0 0.32 19.03 31.20 23.64 0.08

U -> Unseen Classes; S -> Seen Classes; H-> Harmonic Mean of the 2.

References

[1] Original MATLAB Code by Authors

[2] https://github.com/hoseong-kim/sae-pytorch