forked from halide/Halide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlesson_08_scheduling_2.cpp
717 lines (600 loc) · 29 KB
/
lesson_08_scheduling_2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
// Halide tutorial lesson 8: Scheduling multi-stage pipelines
// On linux, you can compile and run it like so:
// g++ lesson_08*.cpp -g -std=c++17 -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -lpthread -ldl -o lesson_08
// LD_LIBRARY_PATH=<path/to/libHalide.so> ./lesson_08
// On os x:
// g++ lesson_08*.cpp -g -std=c++17 -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -o lesson_08
// DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> ./lesson_08
// If you have the entire Halide source tree, you can also build it by
// running:
// make tutorial_lesson_08_scheduling_2
// in a shell with the current directory at the top of the halide
// source tree.
#include "Halide.h"
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
// First we'll declare some Vars to use below.
Var x("x"), y("y");
// Let's examine various scheduling options for a simple two stage
// pipeline. We'll start with the default schedule:
{
Func producer("producer_default"), consumer("consumer_default");
// The first stage will be some simple pointwise math similar
// to our familiar gradient function. The value at position x,
// y is the sin of product of x and y.
producer(x, y) = sin(x * y);
// Now we'll add a second stage which averages together multiple
// points in the first stage.
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// We'll turn on tracing for both functions.
consumer.trace_stores();
producer.trace_stores();
// And evaluate it over a 4x4 box.
printf("\nEvaluating producer-consumer pipeline with default schedule\n");
consumer.realize({4, 4});
// There were no messages about computing values of the
// producer. This is because the default schedule fully
// inlines 'producer' into 'consumer'. It is as if we had
// written the following code instead:
// consumer(x, y) = (sin(x * y) +
// sin(x * (y + 1)) +
// sin((x + 1) * y) +
// sin((x + 1) * (y + 1))/4);
// All calls to 'producer' have been replaced with the body of
// 'producer', with the arguments substituted in for the
// variables.
// The equivalent C code is:
float result[4][4];
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
result[y][x] = (sin(x * y) +
sin(x * (y + 1)) +
sin((x + 1) * y) +
sin((x + 1) * (y + 1))) / 4;
}
}
printf("\n");
// If we look at the loop nest, the producer doesn't appear
// at all. It has been inlined into the consumer.
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
}
// Next we'll examine the next simplest option - computing all
// values required in the producer before computing any of the
// consumer. We call this schedule "root".
{
// Start with the same function definitions:
Func producer("producer_root"), consumer("consumer_root");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Tell Halide to evaluate all of producer before any of consumer.
producer.compute_root();
// Turn on tracing.
consumer.trace_stores();
producer.trace_stores();
// Compile and run.
printf("\nEvaluating producer.compute_root()\n");
consumer.realize({4, 4});
// Reading the output we can see that:
// A) There were stores to producer.
// B) They all happened before any stores to consumer.
// See figures/lesson_08_compute_root.gif for a visualization.
// The producer is on the left and the consumer is on the
// right. Stores are marked in orange and loads are marked in
// blue.
// Equivalent C:
float result[4][4];
// Allocate some temporary storage for the producer.
float producer_storage[5][5];
// Compute the producer.
for (int y = 0; y < 5; y++) {
for (int x = 0; x < 5; x++) {
producer_storage[y][x] = sin(x * y);
}
}
// Compute the consumer. Skip the prints this time.
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[y][x] +
producer_storage[y + 1][x] +
producer_storage[y][x + 1] +
producer_storage[y + 1][x + 1]) / 4;
}
}
// Note that consumer was evaluated over a 4x4 box, so Halide
// automatically inferred that producer was needed over a 5x5
// box. This is the same 'bounds inference' logic we saw in
// the previous lesson, where it was used to detect and avoid
// out-of-bounds reads from an input image.
// If we print the loop nest, we'll see something very
// similar to the C above.
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
}
// Let's compare the two approaches above from a performance
// perspective.
// Full inlining (the default schedule):
// - Temporary memory allocated: 0
// - Loads: 0
// - Stores: 16
// - Calls to sin: 64
// producer.compute_root():
// - Temporary memory allocated: 25 floats
// - Loads: 64
// - Stores: 41
// - Calls to sin: 25
// There's a trade-off here. Full inlining used minimal temporary
// memory and memory bandwidth, but did a whole bunch of redundant
// expensive math (calling sin). It evaluated most points in
// 'producer' four times. The second schedule,
// producer.compute_root(), did the mimimum number of calls to
// sin, but used more temporary memory and more memory bandwidth.
// In any given situation the correct choice can be difficult to
// make. If you're memory-bandwidth limited, or don't have much
// memory (e.g. because you're running on an old cell-phone), then
// it can make sense to do redundant math. On the other hand, sin
// is expensive, so if you're compute-limited then fewer calls to
// sin will make your program faster. Adding vectorization or
// multi-core parallelism tilts the scales in favor of doing
// redundant work, because firing up multiple cpu cores increases
// the amount of math you can do per second, but doesn't increase
// your system memory bandwidth or capacity.
// We can make choices in between full inlining and
// compute_root. Next we'll alternate between computing the
// producer and consumer on a per-scanline basis:
{
// Start with the same function definitions:
Func producer("producer_y"), consumer("consumer_y");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Tell Halide to evaluate producer as needed per y coordinate
// of the consumer:
producer.compute_at(consumer, y);
// This places the code that computes the producer just
// *inside* the consumer's for loop over y, as in the
// equivalent C below.
// Turn on tracing.
producer.trace_stores();
consumer.trace_stores();
// Compile and run.
printf("\nEvaluating producer.compute_at(consumer, y)\n");
consumer.realize({4, 4});
// See figures/lesson_08_compute_y.gif for a visualization.
// Reading the log or looking at the figure you should see
// that producer and consumer alternate on a per-scanline
// basis. Let's look at the equivalent C:
float result[4][4];
// There's an outer loop over scanlines of consumer:
for (int y = 0; y < 4; y++) {
// Allocate space and compute enough of the producer to
// satisfy this single scanline of the consumer. This
// means a 5x2 box of the producer.
float producer_storage[2][5];
for (int py = y; py < y + 2; py++) {
for (int px = 0; px < 5; px++) {
producer_storage[py - y][px] = sin(px * py);
}
}
// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[0][x] +
producer_storage[1][x] +
producer_storage[0][x + 1] +
producer_storage[1][x + 1]) / 4;
}
}
// Again, if we print the loop nest, we'll see something very
// similar to the C above.
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// The performance characteristics of this strategy are in
// between inlining and compute root. We still allocate some
// temporary memory, but less than compute_root, and with
// better locality (we load from it soon after writing to it,
// so for larger images, values should still be in cache). We
// still do some redundant work, but less than full inlining:
// producer.compute_at(consumer, y):
// - Temporary memory allocated: 10 floats
// - Loads: 64
// - Stores: 56
// - Calls to sin: 40
}
// We could also say producer.compute_at(consumer, x), but this
// would be very similar to full inlining (the default
// schedule). Instead let's distinguish between the loop level at
// which we allocate storage for producer, and the loop level at
// which we actually compute it. This unlocks a few optimizations.
{
Func producer("producer_root_y"), consumer("consumer_root_y");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Tell Halide to make a buffer to store all of producer at
// the outermost level:
producer.store_root();
// ... but compute it as needed per y coordinate of the
// consumer.
producer.compute_at(consumer, y);
producer.trace_stores();
consumer.trace_stores();
printf("\nEvaluating producer.store_root().compute_at(consumer, y)\n");
consumer.realize({4, 4});
// See figures/lesson_08_store_root_compute_y.gif for a
// visualization.
// Reading the log or looking at the figure you should see
// that producer and consumer again alternate on a
// per-scanline basis. It computes a 5x2 box of the producer
// to satisfy the first scanline of the consumer, but after
// that it only computes a 5x1 box of the output for each new
// scanline of the consumer!
//
// Halide has detected that for all scanlines except for the
// first, it can reuse the values already sitting in the
// buffer we've allocated for producer. Let's look at the
// equivalent C:
float result[4][4];
// producer.store_root() implies that storage goes here:
float producer_storage[5][5];
// There's an outer loop over scanlines of consumer:
for (int y = 0; y < 4; y++) {
// Compute enough of the producer to satisfy this scanline
// of the consumer.
for (int py = y; py < y + 2; py++) {
// Skip over rows of producer that we've already
// computed in a previous iteration.
if (y > 0 && py == y) continue;
for (int px = 0; px < 5; px++) {
producer_storage[py][px] = sin(px * py);
}
}
// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[y][x] +
producer_storage[y + 1][x] +
producer_storage[y][x + 1] +
producer_storage[y + 1][x + 1]) / 4;
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// The performance characteristics of this strategy are pretty
// good! The numbers are similar to compute_root, except locality
// is better. We're doing the minimum number of sin calls,
// and we load values soon after they are stored, so we're
// probably making good use of the cache:
// producer.store_root().compute_at(consumer, y):
// - Temporary memory allocated: 10 floats
// - Loads: 64
// - Stores: 41
// - Calls to sin: 25
// Note that my claimed amount of memory allocated doesn't
// match the reference C code. Halide is performing one more
// optimization under the hood. It folds the storage for the
// producer down into a circular buffer of two
// scanlines. Equivalent C would actually look like this:
{
// Actually store 2 scanlines instead of 5
float producer_storage[2][5];
for (int y = 0; y < 4; y++) {
for (int py = y; py < y + 2; py++) {
if (y > 0 && py == y) continue;
for (int px = 0; px < 5; px++) {
// Stores to producer_storage have their y coordinate bit-masked.
producer_storage[py & 1][px] = sin(px * py);
}
}
// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {
// Loads from producer_storage have their y coordinate bit-masked.
result[y][x] = (producer_storage[y & 1][x] +
producer_storage[(y + 1) & 1][x] +
producer_storage[y & 1][x + 1] +
producer_storage[(y + 1) & 1][x + 1]) / 4;
}
}
}
}
// We can do even better, by leaving the storage in the outermost
// loop, but moving the computation into the innermost loop:
{
Func producer("producer_root_x"), consumer("consumer_root_x");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Store outermost, compute innermost.
producer.store_root().compute_at(consumer, x);
producer.trace_stores();
consumer.trace_stores();
printf("\nEvaluating producer.store_root().compute_at(consumer, x)\n");
consumer.realize({4, 4});
// See figures/lesson_08_store_root_compute_x.gif for a
// visualization.
// You should see that producer and consumer now alternate on
// a per-pixel basis. Here's the equivalent C:
float result[4][4];
// producer.store_root() implies that storage goes here, but
// we can fold it down into a circular buffer of two
// scanlines:
float producer_storage[2][5];
// For every pixel of the consumer:
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
// Compute enough of the producer to satisfy this
// pixel of the consumer, but skip values that we've
// already computed:
if (y == 0 && x == 0) {
producer_storage[y & 1][x] = sin(x * y);
}
if (y == 0) {
producer_storage[y & 1][x + 1] = sin((x + 1) * y);
}
if (x == 0) {
producer_storage[(y + 1) & 1][x] = sin(x * (y + 1));
}
producer_storage[(y + 1) & 1][x + 1] = sin((x + 1) * (y + 1));
result[y][x] = (producer_storage[y & 1][x] +
producer_storage[(y + 1) & 1][x] +
producer_storage[y & 1][x + 1] +
producer_storage[(y + 1) & 1][x + 1]) / 4;
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// The performance characteristics of this strategy are the
// best so far. One of the four values of the producer we need
// is probably still sitting in a register, so I won't count
// it as a load:
// producer.store_root().compute_at(consumer, x):
// - Temporary memory allocated: 10 floats
// - Loads: 48
// - Stores: 41
// - Calls to sin: 25
}
// So what's the catch? Why not always do
// producer.store_root().compute_at(consumer, x) for this type of
// code?
//
// The answer is parallelism. In both of the previous two
// strategies we've assumed that values computed in previous
// iterations are lying around for us to reuse. This assumes that
// previous values of x or y happened earlier in time and have
// finished. This is not true if you parallelize or vectorize
// either loop. Darn. If you parallelize, Halide won't inject the
// optimizations that skip work already done if there's a parallel
// loop in between the store_at level and the compute_at level,
// and won't fold the storage down into a circular buffer either,
// which makes our store_root pointless.
// We're running out of options. We can make new ones by
// splitting. We can store_at or compute_at at the natural
// variables of the consumer (x and y), or we can split x or y
// into new inner and outer sub-variables and then schedule with
// respect to those. We'll use this to express fusion in tiles:
{
Func producer("producer_tile"), consumer("consumer_tile");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// We'll compute 8x8 of the consumer, in 4x4 tiles.
Var x_outer, y_outer, x_inner, y_inner;
consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
// Compute the producer per tile of the consumer
producer.compute_at(consumer, x_outer);
// Notice that I wrote my schedule starting from the end of
// the pipeline (the consumer). This is because the schedule
// for the producer refers to x_outer, which we introduced
// when we tiled the consumer. You can write it in the other
// order, but it tends to be harder to read.
// Turn on tracing.
producer.trace_stores();
consumer.trace_stores();
printf("\nEvaluating:\n"
"consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);\n"
"producer.compute_at(consumer, x_outer);\n");
consumer.realize({8, 8});
// See figures/lesson_08_tile.gif for a visualization.
// The producer and consumer now alternate on a per-tile
// basis. Here's the equivalent C:
float result[8][8];
// For every tile of the consumer:
for (int y_outer = 0; y_outer < 2; y_outer++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
// Compute the x and y coords of the start of this tile.
int x_base = x_outer * 4;
int y_base = y_outer * 4;
// Compute enough of producer to satisfy this tile. A
// 4x4 tile of the consumer requires a 5x5 tile of the
// producer.
float producer_storage[5][5];
for (int py = y_base; py < y_base + 5; py++) {
for (int px = x_base; px < x_base + 5; px++) {
producer_storage[py - y_base][px - x_base] = sin(px * py);
}
}
// Compute this tile of the consumer
for (int y_inner = 0; y_inner < 4; y_inner++) {
for (int x_inner = 0; x_inner < 4; x_inner++) {
int x = x_base + x_inner;
int y = y_base + y_inner;
result[y][x] =
(producer_storage[y - y_base][x - x_base] +
producer_storage[y - y_base + 1][x - x_base] +
producer_storage[y - y_base][x - x_base + 1] +
producer_storage[y - y_base + 1][x - x_base + 1]) / 4;
}
}
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// Tiling can make sense for problems like this one with
// stencils that reach outwards in x and y. Each tile can be
// computed independently in parallel, and the redundant work
// done by each tile isn't so bad once the tiles get large
// enough.
}
// Let's try a mixed strategy that combines what we have done with
// splitting, parallelizing, and vectorizing. This is one that
// often works well in practice for large images. If you
// understand this schedule, then you understand 95% of scheduling
// in Halide.
{
Func producer("producer_mixed"), consumer("consumer_mixed");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Split the y coordinate of the consumer into strips of 16 scanlines:
Var yo, yi;
consumer.split(y, yo, yi, 16);
// Compute the strips using a thread pool and a task queue.
consumer.parallel(yo);
// Vectorize across x by a factor of four.
consumer.vectorize(x, 4);
// Now store the producer per-strip. This will be 17 scanlines
// of the producer (16+1), but hopefully it will fold down
// into a circular buffer of two scanlines:
producer.store_at(consumer, yo);
// Within each strip, compute the producer per scanline of the
// consumer, skipping work done on previous scanlines.
producer.compute_at(consumer, yi);
// Also vectorize the producer (because sin is vectorizable on x86 using SSE).
producer.vectorize(x, 4);
// Let's leave tracing off this time, because we're going to
// evaluate over a larger image.
// consumer.trace_stores();
// producer.trace_stores();
Buffer<float> halide_result = consumer.realize({160, 160});
// See figures/lesson_08_mixed.mp4 for a visualization.
// Here's the equivalent (serial) C:
float c_result[160][160];
// For every strip of 16 scanlines (this loop is parallel in
// the Halide version)
for (int yo = 0; yo < 160 / 16; yo++) {
int y_base = yo * 16;
// Allocate a two-scanline circular buffer for the producer
float producer_storage[2][161];
// For every scanline in the strip of 16:
for (int yi = 0; yi < 16; yi++) {
int y = y_base + yi;
for (int py = y; py < y + 2; py++) {
// Skip scanlines already computed *within this task*
if (yi > 0 && py == y) continue;
// Compute this scanline of the producer in 4-wide vectors
for (int x_vec = 0; x_vec < 160 / 4 + 1; x_vec++) {
int x_base = x_vec * 4;
// 4 doesn't divide 161, so push the last vector left
// (see lesson 05).
if (x_base > 161 - 4) x_base = 161 - 4;
// If you're on x86, Halide generates SSE code for this part:
int x[] = {x_base, x_base + 1, x_base + 2, x_base + 3};
float vec[4] = {sinf(x[0] * py), sinf(x[1] * py),
sinf(x[2] * py), sinf(x[3] * py)};
producer_storage[py & 1][x[0]] = vec[0];
producer_storage[py & 1][x[1]] = vec[1];
producer_storage[py & 1][x[2]] = vec[2];
producer_storage[py & 1][x[3]] = vec[3];
}
}
// Now compute consumer for this scanline:
for (int x_vec = 0; x_vec < 160 / 4; x_vec++) {
int x_base = x_vec * 4;
// Again, Halide's equivalent here uses SSE.
int x[] = {x_base, x_base + 1, x_base + 2, x_base + 3};
float vec[] = {
(producer_storage[y & 1][x[0]] +
producer_storage[(y + 1) & 1][x[0]] +
producer_storage[y & 1][x[0] + 1] +
producer_storage[(y + 1) & 1][x[0] + 1]) /
4,
(producer_storage[y & 1][x[1]] +
producer_storage[(y + 1) & 1][x[1]] +
producer_storage[y & 1][x[1] + 1] +
producer_storage[(y + 1) & 1][x[1] + 1]) /
4,
(producer_storage[y & 1][x[2]] +
producer_storage[(y + 1) & 1][x[2]] +
producer_storage[y & 1][x[2] + 1] +
producer_storage[(y + 1) & 1][x[2] + 1]) /
4,
(producer_storage[y & 1][x[3]] +
producer_storage[(y + 1) & 1][x[3]] +
producer_storage[y & 1][x[3] + 1] +
producer_storage[(y + 1) & 1][x[3] + 1]) /
4};
c_result[y][x[0]] = vec[0];
c_result[y][x[1]] = vec[1];
c_result[y][x[2]] = vec[2];
c_result[y][x[3]] = vec[3];
}
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// Look on my code, ye mighty, and despair!
// Let's check the C result against the Halide result. Doing
// this I found several bugs in my C implementation, which
// should tell you something.
for (int y = 0; y < 160; y++) {
for (int x = 0; x < 160; x++) {
float error = halide_result(x, y) - c_result[y][x];
// It's floating-point math, so we'll allow some slop:
if (error < -0.001f || error > 0.001f) {
printf("halide_result(%d, %d) = %f instead of %f\n",
x, y, halide_result(x, y), c_result[y][x]);
return -1;
}
}
}
}
// This stuff is hard. We ended up in a three-way trade-off
// between memory bandwidth, redundant work, and
// parallelism. Halide can't make the correct choice for you
// automatically (sorry). Instead it tries to make it easier for
// you to explore various options, without messing up your
// program. In fact, Halide promises that scheduling calls like
// compute_root won't change the meaning of your algorithm -- you
// should get the same bits back no matter how you schedule
// things.
// So be empirical! Experiment with various schedules and keep a
// log of performance. Form hypotheses and then try to prove
// yourself wrong. Don't assume that you just need to vectorize
// your code by a factor of four and run it on eight cores and
// you'll get 32x faster. This almost never works. Modern systems
// are complex enough that you can't predict performance reliably
// without running your code.
// We suggest you start by scheduling all of your non-trivial
// stages compute_root, and then work from the end of the pipeline
// upwards, inlining, parallelizing, and vectorizing each stage in
// turn until you reach the top.
// Halide is not just about vectorizing and parallelizing your
// code. That's not enough to get you very far. Halide is about
// giving you tools that help you quickly explore different
// trade-offs between locality, redundant work, and parallelism,
// without messing up the actual result you're trying to compute.
printf("Success!\n");
return 0;
}