Skip to content

Latest commit

 

History

History

data_processing

Data Processing

Our image processing code is largely adapted from hongsukchoi/3DCrowdNet_RELEASE.

Installation

conda create -n 3dportraitgan_data python=3.8

activate 3dportraitgan_data

cd data_processing

pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/torch_stable.html

pip install -r requirements.txt

python -m pip install -e detectron2

For windows:

pip install pywin32==306

For windows users who experience errors during detectron2 installation, please open a x64 Native Tools Command Prompt for Visual Studio and execute python -m pip install -e detectron2.

Pretrained models

Download Link Save Path
R_101_FPN_DL_soft_s1x.pkl ./data_processing/detectron2/projects/DensePose
phi_smpl_27554_256.pkl ./data_processing/detectron2/projects/DensePose
pose_higher_hrnet_w32_512.pth ./data_processing/HigherHRNet-Human-Pose-Estimation/models/pytorch/pose_coco
crowdhuman_yolov5m.pt ./data_processing/yolov5_crowdhuman
basicModel_neutral_lbs_10_207_0_v1.0.0.pkl ./data_processing/common/utils/smplpytorch/smplpytorch/native/models
VPOSER_CKPT ./data_processing/common/utils/human_model_files/smpl/VPOSER_CKPT
J_regressor_extra.npy ./data_processing/data
demo_checkpoint.pth.tar ./data_processing/demo

If you encounter RuntimeError: Subtraction, the - operator, with a bool tensor is not supported., you may refer to this issue for a solution or change L301~L304 of anaconda3/lib/python3.8/site-packages/torchgeometry/core/conversion.py to below:

mask_c0 = mask_d2.float() * mask_d0_d1.float()
mask_c1 = mask_d2.float() * (1 - mask_d0_d1.float())
mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1.float()
mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float())

Put all real images in $TEST_DATA_DIR$/samples

Then process the randomly generated images to produce aligned images following the alignment setting of 3DPortraitGAN:

activate 3dportraitgan_data

python preprocess_img.py --test_data_dir=$TEST_DATA_DIR$

Results will be saved to $TEST_DATA_DIR$/samples_new_crop.