-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain_warp.py
134 lines (97 loc) · 4.66 KB
/
main_warp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os.path
import argparse
import cv2
import numpy as np
from tqdm import tqdm
from styleGAN2_model.stylegan2_generator import StyleGAN2Generator
from classifier.src.feature_extractor.neck_mask_extractor import get_neck_blur_mask, get_parsingNet
from warp.warpper import warp_img
import glob
import time
'''
Data prepare:
For real images process, you should input `--data_dir PATH`,
put original real images in $PATH/origin, named `{name}.jpg`,
the corresponding wp latent code should be put in $PATH/code,
named `{name}_wp.npy`.
'''
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(
description='Edit image synthesis with given semantic boundary.')
parser.add_argument('-i', '--data_dir', type=str, default='',
help='If specified, will load latent codes from given ')
parser.add_argument('-b', '--boundary_path', type=str,
default='./interface/boundaries/fine/all',
help='Path to the semantic boundary. (required)')
parser.add_argument('--alpha', type=float, default=-5.0,
help='End point for manipulation in latent space. '
'(default: 3.0)')
parser.add_argument('-s', '--latent_space_type', type=str, default='wp',
choices=['z', 'Z', 'w', 'W', 'wp', 'wP', 'Wp', 'WP'],
help='Latent space used in Style GAN. (default: `Z`)')
return parser.parse_args()
def mkdir(path):
if not os.path.exists(path):
os.mkdir(path)
def diffuse(init_code, target, mask, inverter):
kwargs = {'latent_space_type': 'wp'}
target = target[:, :, ::-1]
code, viz_result = inverter.easy_mask_diffuse(target=target,
init_code=init_code,
mask=mask,
**kwargs)
viz_result = viz_result[:, :, ::-1]
return viz_result
def run():
model_name = 'stylegan2_ffhq'
args = parse_args()
latent_space_type = args.latent_space_type
assert os.path.exists(args.data_dir), f'data_dir {args.data_dir} dose not exist!'
origin_img_dir = os.path.join(args.data_dir, 'origin')
code_dir = os.path.join(args.data_dir, 'code')
res_dir = os.path.join(args.data_dir, 'warp_res')
assert os.path.exists(origin_img_dir), f'{origin_img_dir} dose not exist!'
assert os.path.exists(code_dir), f'data_dir {code_dir} dose not exist!'
mkdir(res_dir)
print(f'Initializing generator.')
model = StyleGAN2Generator(model_name, logger=None)
kwargs = {'latent_space_type': latent_space_type}
print(f'Preparing boundary.')
boundary_path=os.path.join(args.boundary_path,'boundary.npy')
if not os.path.isfile(boundary_path):
raise ValueError(f'Boundary `{boundary_path}` does not exist!')
boundary = np.load(boundary_path)
print(f'Load latent codes and images from `{args.data_dir}`.')
latent_codes = []
origin_img_list = []
for img in glob.glob(os.path.join(origin_img_dir, '*.jpg'))+glob.glob(os.path.join(origin_img_dir, '*.png')):
name = os.path.basename(img)[:-4]
code_path = os.path.join(code_dir, f'{name}_wp.npy')
if os.path.exists(code_path):
latent_codes.append(code_path)
origin_img_list.append(img)
total_num = len(latent_codes)
print(f'Processing {total_num} samples.')
neckMaskNet = get_parsingNet()
pbar = tqdm(total=total_num)
for img_index in range(total_num):
pbar.update(1)
image_name = os.path.splitext(os.path.basename(origin_img_list[img_index]))[0]
if os.path.exists(os.path.join(res_dir, f'{image_name}.jpg')):
continue
wps_latent = np.reshape(np.load(latent_codes[img_index]), (1, 18, 512))
origin_img = cv2.imread(origin_img_list[img_index])
distance = args.alpha
edited_wps_latent = wps_latent + distance * boundary
edited_output = model.easy_style_mixing(latent_codes=edited_wps_latent,
style_range=range(6, 18),
style_codes=wps_latent,
mix_ratio=1.0, **kwargs)
edited_img = edited_output['image'][0][:, :, ::-1]
mask = get_neck_blur_mask(img_path=origin_img, net=neckMaskNet, dilate=5)
warpped_edited_img = warp_img(origin_img, edited_img, net=neckMaskNet, debug=False)
res = warpped_edited_img * (mask / 255) + origin_img * (1 - mask / 255)
cv2.imwrite(os.path.join(res_dir, f'{image_name}.jpg'),res)
if __name__ == '__main__':
run()