-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbase_generator.py
249 lines (192 loc) · 8.57 KB
/
base_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# python3.7
"""Contains the base class for generator."""
import os
import sys
import logging
import numpy as np
import torch
from . import model_settings
__all__ = ['BaseGenerator']
def get_temp_logger(logger_name='logger'):
"""Gets a temporary logger.
This logger will print all levels of messages onto the screen.
Args:
logger_name: Name of the logger.
Returns:
A `logging.Logger`.
Raises:
ValueError: If the input `logger_name` is empty.
"""
if not logger_name:
raise ValueError(f'Input `logger_name` should not be empty!')
logger = logging.getLogger(logger_name)
if not logger.hasHandlers():
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")
sh = logging.StreamHandler(stream=sys.stdout)
sh.setLevel(logging.DEBUG)
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger
class BaseGenerator(object):
"""Base class for generator used in GAN variants.
NOTE: The model should be defined with pytorch, and only used for inference.
"""
def __init__(self, model_name, logger=None):
"""Initializes with specific settings.
The model should be registered in `model_settings.py` with proper settings
first. Among them, some attributes are necessary, including:
(1) gan_type: Type of the GAN model.
(2) latent_space_dim: Dimension of the latent space. Should be a tuple.
(3) resolution: Resolution of the synthesis.
(4) min_val: Minimum value of the raw output. (default -1.0)
(5) max_val: Maximum value of the raw output. (default 1.0)
(6) channel_order: Channel order of the output image. (default: `RGB`)
Args:
model_name: Name with which the model is registered.
logger: Logger for recording log messages. If set as `None`, a default
logger, which prints messages from all levels to screen, will be
created. (default: None)
Raises:
AttributeError: If some necessary attributes are missing.
"""
self.model_name = model_name
for key, val in model_settings.MODEL_POOL[model_name].items():
setattr(self, key, val)
self.use_cuda = model_settings.USE_CUDA
self.batch_size = model_settings.MAX_IMAGES_ON_DEVICE
self.logger = logger or get_temp_logger(model_name + '_generator')
self.model = None
self.run_device = 'cuda' if self.use_cuda else 'cpu'
self.cpu_device = 'cpu'
# Check necessary settings.
self.check_attr('gan_type')
self.check_attr('latent_space_dim')
self.check_attr('resolution')
self.min_val = getattr(self, 'min_val', -1.0)
self.max_val = getattr(self, 'max_val', 1.0)
self.output_channels = getattr(self, 'output_channels', 3)
self.channel_order = getattr(self, 'channel_order', 'RGB').upper()
assert self.channel_order in ['RGB', 'BGR']
# Build model and load pre-trained weights.
self.build()
if os.path.isfile(getattr(self, 'model_path', '')):
self.load()
elif os.path.isfile(getattr(self, 'tf_model_path', '')):
self.convert_tf_model()
else:
self.logger.warning(f'No pre-trained model will be loaded!')
# Change to inference mode and GPU mode if needed.
assert self.model
self.model.eval().to(self.run_device)
def check_attr(self, attr_name):
"""Checks the existence of a particular attribute.
Args:
attr_name: Name of the attribute to check.
Raises:
AttributeError: If the target attribute is missing.
"""
if not hasattr(self, attr_name):
raise AttributeError(
f'`{attr_name}` is missing for model `{self.model_name}`!')
def build(self):
"""Builds the graph."""
raise NotImplementedError(f'Should be implemented in derived class!')
def load(self):
"""Loads pre-trained weights."""
raise NotImplementedError(f'Should be implemented in derived class!')
def convert_tf_model(self, test_num=10):
"""Converts models weights from tensorflow version.
Args:
test_num: Number of images to generate for testing whether the conversion
is done correctly. `0` means skipping the test. (default 10)
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def sample(self, num):
"""Samples latent codes randomly.
Args:
num: Number of latent codes to sample. Should be positive.
Returns:
A `numpy.ndarray` as sampled latend codes.
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def preprocess(self, latent_codes):
"""Preprocesses the input latent code if needed.
Args:
latent_codes: The input latent codes for preprocessing.
Returns:
The preprocessed latent codes which can be used as final input for the
generator.
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def easy_sample(self, num):
"""Wraps functions `sample()` and `preprocess()` together."""
return self.preprocess(self.sample(num))
def synthesize(self, latent_codes):
"""Synthesizes images with given latent codes.
NOTE: The latent codes should have already been preprocessed.
Args:
latent_codes: Input latent codes for image synthesis.
Returns:
A dictionary whose values are raw outputs from the generator.
"""
raise NotImplementedError(f'Should be implemented in derived class!')
def get_value(self, tensor):
"""Gets value of a `torch.Tensor`.
Args:
tensor: The input tensor to get value from.
Returns:
A `numpy.ndarray`.
Raises:
ValueError: If the tensor is with neither `torch.Tensor` type or
`numpy.ndarray` type.
"""
if isinstance(tensor, np.ndarray):
return tensor
if isinstance(tensor, torch.Tensor):
return tensor.to(self.cpu_device).detach().numpy()
raise ValueError(f'Unsupported input type `{type(tensor)}`!')
def postprocess(self, images):
"""Postprocesses the output images if needed.
This function assumes the input numpy array is with shape [batch_size,
channel, height, width]. Here, `channel = 3` for color image and
`channel = 1` for grayscale image. The return images are with shape
[batch_size, height, width, channel]. NOTE: The channel order of output
image will always be `RGB`.
Args:
images: The raw output from the generator.
Returns:
The postprocessed images with dtype `numpy.uint8` with range [0, 255].
Raises:
ValueError: If the input `images` are not with type `numpy.ndarray` or not
with shape [batch_size, channel, height, width].
"""
if not isinstance(images, np.ndarray):
raise ValueError(f'Images should be with type `numpy.ndarray`!')
images_shape = images.shape
if len(images_shape) != 4 or images_shape[1] not in [1, 3]:
raise ValueError(f'Input should be with shape [batch_size, channel, '
f'height, width], where channel equals to 1 or 3. '
f'But {images_shape} is received!')
images = (images - self.min_val) * 255 / (self.max_val - self.min_val)
images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
images = images.transpose(0, 2, 3, 1)
if self.channel_order == 'BGR':
images = images[:, :, :, ::-1]
return images
def easy_synthesize(self, latent_codes, **kwargs):
"""Wraps functions `synthesize()` and `postprocess()` together."""
outputs = self.synthesize(latent_codes, **kwargs)
if 'image' in outputs:
outputs['image'] = self.postprocess(outputs['image'])
return outputs
def get_batch_inputs(self, latent_codes):
"""Gets batch inputs from a collection of latent codes.
This function will yield at most `self.batch_size` latent_codes at a time.
Args:
latent_codes: The input latent codes for generation. First dimension
should be the total number.
"""
total_num = latent_codes.shape[0]
for i in range(0, total_num, self.batch_size):
yield latent_codes[i:i + self.batch_size]