-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 01637ea
Showing
1,672 changed files
with
242,727 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
command | ||
pip_list | ||
|
||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
.idea/ | ||
|
||
stable-diffusion/CompVis | ||
stable-diffusion/src | ||
stable-diffusion/latent_diffusion.egg-info | ||
|
||
|
||
3DPortraitGAN_pyramid/models/*.pkl | ||
3DPortraitGAN_pyramid/models/*.ckpt | ||
3DPortraitGAN_pyramid/models/*.pt | ||
3DPortraitGAN_pyramid/models/*.json | ||
3DPortraitGAN_pyramid/out | ||
3DPortraitGAN_pyramid/smplx_models/smpl/*.pkl | ||
3DPortraitGAN_pyramid/training-runs | ||
|
||
stable-dreamfusion-3DPortrait/pretrained | ||
stable-dreamfusion-3DPortrait/output | ||
stable-dreamfusion-3DPortrait/smplx_models | ||
stable-dreamfusion-3DPortrait/transfer_data | ||
|
||
command.py | ||
temp.py | ||
|
||
*.pkl | ||
*.pth | ||
*.pt | ||
*.pth.tar | ||
./data_processing/data/J_regressor_extra.npy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
models | ||
smplx_models | ||
transfer_data | ||
generate_inversion_results.py | ||
training/dataset-ref.py | ||
training-runs | ||
.vscode | ||
*.out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# 3DPortraitGAN_pyramid Training | ||
|
||
**Note: Upon the acceptance of our [3DPortraitGAN](https://arxiv.org/abs/2307.14770), we plan to release our 360°PHQ dataset to facilitate reproducibility of research. We encourage you to utilize our provided pre-trained models. Stay tuned for updates! ** | ||
|
||
|
||
|
||
## Training | ||
|
||
```shell | ||
cd 3DPortraitGAN_pyramid | ||
|
||
# stage 1 | ||
python train.py \ | ||
--outdir=./training-runs/stage1 --cfg=full-head \ | ||
--data=$DATASET_PATH/360PHQ-512.zip --seg_data=$DATASET_PATH/360PHQ-512-mask.zip \ | ||
--gpus=8 --batch=32 --gamma=5.0 --cbase=18432 --cmax=144 \ | ||
--gamma_seg=5.0 --use_torgb_raw=1 --decoder_activation="none" \ | ||
--bcg_reg_prob 0.2 --triplane_depth 3 --density_noise_fade_kimg 200 --density_reg 0 --back_repeat=1 \ | ||
--gen_pose_cond=True --gpc_reg_prob=0.7 --mirror=True --data_rebalance=False --image-snap=25 --kimg=20000 \ | ||
--neural_rendering_resolution_initial=64 \ | ||
--pose_loss_weight=10 --input_pose_params_reg_loss_weight=5 --input_pose_params_reg_loss_kimg=200 \ | ||
--train_g_pose_branch=True \ | ||
--explicitly_symmetry=True \ | ||
--metric_pose_sample_mode=G_predict | ||
|
||
|
||
# stage 2 | ||
python train.py \ | ||
--outdir=./training-runs/stage2 --cfg=full-head \ | ||
--data=$DATASET_PATH/360PHQ-512.zip --seg_data=$DATASET_PATH/360PHQ-512-mask.zip \ | ||
--gpus=8 --batch=32 --gamma=5.0 --cbase=18432 --cmax=144 \ | ||
--gamma_seg=5.0 --use_torgb_raw=1 --decoder_activation="none" \ | ||
--bcg_reg_prob 0.2 --triplane_depth 3 --density_noise_fade_kimg 200 --density_reg 0 --back_repeat=1 \ | ||
--gen_pose_cond=True --gpc_reg_prob=0.7 --mirror=True --data_rebalance=False --image-snap=25 --kimg=20000 \ | ||
--neural_rendering_resolution_initial=64 \ | ||
--pose_loss_weight=10 --input_pose_params_reg_loss_weight=5 --input_pose_params_reg_loss_kimg=200 \ | ||
--train_g_pose_branch=False \ | ||
--explicitly_symmetry=True \ | ||
--metric_pose_sample_mode=D_predict \ | ||
--resume=stage1.pkl --resume_kimg=NUM_KIMGS | ||
|
||
# stage 3 | ||
python train.py \ | ||
--outdir=./training-runs/stage3 --cfg=full-head \ | ||
--data=$DATASET_PATH/360PHQ-512.zip --seg_data=$DATASET_PATH/360PHQ-512-mask.zip \ | ||
--gpus=8 --batch=32 --gamma=5.0 --cbase=18432 --cmax=144 \ | ||
--gamma_seg=5.0 --use_torgb_raw=1 --decoder_activation="none" \ | ||
--bcg_reg_prob 0.2 --triplane_depth 3 --density_noise_fade_kimg 200 --density_reg 0 --back_repeat=1 \ | ||
--gen_pose_cond=True --gpc_reg_prob=0.7 --mirror=True --data_rebalance=False --image-snap=25 --kimg=20000 \ | ||
--neural_rendering_resolution_initial=64 --neural_rendering_resolution_final=128 \ | ||
--neural_rendering_resolution_fade_kimg=1000 \ | ||
--pose_loss_weight=10 --input_pose_params_reg_loss_weight=5 --input_pose_params_reg_loss_kimg=200 \ | ||
--train_g_pose_branch=False \ | ||
--explicitly_symmetry=True \ | ||
--metric_pose_sample_mode=D_predict \ | ||
--resume=stage2.pkl --resume_kimg=NUM_KIMGS | ||
|
||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | ||
# | ||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | ||
# property and proprietary rights in and to this material, related | ||
# documentation and any modifications thereto. Any use, reproduction, | ||
# disclosure or distribution of this material and related documentation | ||
# without an express license agreement from NVIDIA CORPORATION or | ||
# its affiliates is strictly prohibited. | ||
|
||
"""Calculate quality metrics for previous training run or pretrained network pickle.""" | ||
|
||
import os | ||
import click | ||
import json | ||
import tempfile | ||
import copy | ||
import torch | ||
|
||
import dnnlib | ||
import legacy | ||
from metrics import metric_main | ||
from metrics import metric_utils | ||
from torch_utils import training_stats | ||
from torch_utils import custom_ops | ||
from torch_utils import misc | ||
from torch_utils.ops import conv2d_gradfix | ||
|
||
#---------------------------------------------------------------------------- | ||
|
||
def subprocess_fn(rank, args, temp_dir): | ||
dnnlib.util.Logger(should_flush=True) | ||
|
||
# Init torch.distributed. | ||
if args.num_gpus > 1: | ||
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) | ||
if os.name == 'nt': | ||
init_method = 'file:///' + init_file.replace('\\', '/') | ||
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus) | ||
else: | ||
init_method = f'file://{init_file}' | ||
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus) | ||
|
||
# Init torch_utils. | ||
sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None | ||
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) | ||
if rank != 0 or not args.verbose: | ||
custom_ops.verbosity = 'none' | ||
|
||
# Configure torch. | ||
device = torch.device('cuda', rank) | ||
torch.backends.cuda.matmul.allow_tf32 = False | ||
torch.backends.cudnn.allow_tf32 = False | ||
conv2d_gradfix.enabled = True | ||
|
||
# Print network summary. | ||
G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device) | ||
D = copy.deepcopy(args.D).eval().requires_grad_(False).to(device) if args.metric_pose_sample_mode == 'D_predict' else None | ||
|
||
|
||
resample_filter = args.pose_predict_kwargs['resample_filter'] | ||
resample_filter = torch.tensor(resample_filter, device=device).to(torch.float32) | ||
|
||
if rank == 0 and args.verbose: | ||
z = torch.empty([1, G.z_dim], device=device) | ||
c = torch.empty([1, G.c_dim], device=device) | ||
misc.print_module_summary(G, [z, c]) | ||
|
||
# Calculate each metric. | ||
for metric in args.metrics: | ||
if rank == 0 and args.verbose: | ||
print(f'Calculating {metric}...') | ||
progress = metric_utils.ProgressMonitor(verbose=args.verbose) | ||
# result_dict = metric_main.calc_metric(metric=metric, G=G, dataset_kwargs=args.dataset_kwargs, | ||
# num_gpus=args.num_gpus, rank=rank, device=device, progress=progress) | ||
|
||
|
||
result_dict = metric_main.calc_metric(metric=metric, | ||
G=G, | ||
dataset_kwargs=args.dataset_kwargs, | ||
num_gpus=args.num_gpus, | ||
rank=rank, | ||
device=device, | ||
metric_pose_sample_mode = args.metric_pose_sample_mode, | ||
progress=progress, | ||
identical_c_p = args.identical_c_p, | ||
D = D, | ||
pose_predict_kwargs = { | ||
'neural_rendering_resolution':args.pose_predict_kwargs['neural_rendering_resolution'], | ||
'blur_sigma':args.pose_predict_kwargs['blur_sigma'], | ||
'resample_filter':resample_filter, | ||
'filter_mode':args.pose_predict_kwargs['filter_mode'] | ||
} if args.metric_pose_sample_mode == 'D_predict' else None | ||
) | ||
if rank == 0: | ||
metric_main.report_metric(result_dict, run_dir=args.run_dir, snapshot_pkl=args.network_pkl) | ||
if rank == 0 and args.verbose: | ||
print() | ||
|
||
# Done. | ||
if rank == 0 and args.verbose: | ||
print('Exiting...') | ||
|
||
#---------------------------------------------------------------------------- | ||
|
||
def parse_comma_separated_list(s): | ||
if isinstance(s, list): | ||
return s | ||
if s is None or s.lower() == 'none' or s == '': | ||
return [] | ||
return s.split(',') | ||
|
||
#---------------------------------------------------------------------------- | ||
|
||
@click.command() | ||
@click.pass_context | ||
@click.option('network_pkl', '--network', help='Network pickle filename or URL', metavar='PATH', required=True) | ||
@click.option('pose_predict_kwargs', '--pose_predict_kwargs', help='Network pickle filename or URL', metavar='PATH', required=True) | ||
@click.option('--metric_pose_sample_mode', help='Type of metric_pose_sample ', metavar='STR', type=click.Choice(['D_predict', 'G_predict']), required=False, default='G_predict') | ||
@click.option('--identical_c_p', help='Enable dataset x-flips [default: look up]', type=bool, metavar='BOOL') | ||
|
||
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True) | ||
@click.option('--data', help='Dataset to evaluate against [default: look up]', metavar='[ZIP|DIR]') | ||
@click.option('--seg_data', help='Dataset to evaluate against [default: look up]', metavar='[ZIP|DIR]') | ||
@click.option('--mirror', help='Enable dataset x-flips [default: look up]', type=bool, metavar='BOOL') | ||
@click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True) | ||
@click.option('--verbose', help='Print optional information', type=bool, default=True, metavar='BOOL', show_default=True) | ||
|
||
def calc_metrics(ctx, network_pkl, pose_predict_kwargs,metric_pose_sample_mode,identical_c_p ,metrics, data,seg_data, mirror, gpus, verbose): | ||
"""Calculate quality metrics for previous training run or pretrained network pickle. | ||
Examples: | ||
\b | ||
# Previous training run: look up options automatically, save result to JSONL file. | ||
python calc_metrics.py --metrics=eqt50k_int,eqr50k \\ | ||
--network=~/training-runs/00000-stylegan3-r-mydataset/network-snapshot-000000.pkl | ||
\b | ||
# Pre-trained network pickle: specify dataset explicitly, print result to stdout. | ||
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq-1024x1024.zip --mirror=1 \\ | ||
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl | ||
\b | ||
Recommended metrics: | ||
fid50k_full Frechet inception distance against the full dataset. | ||
kid50k_full Kernel inception distance against the full dataset. | ||
pr50k3_full Precision and recall againt the full dataset. | ||
ppl2_wend Perceptual path length in W, endpoints, full image. | ||
eqt50k_int Equivariance w.r.t. integer translation (EQ-T). | ||
eqt50k_frac Equivariance w.r.t. fractional translation (EQ-T_frac). | ||
eqr50k Equivariance w.r.t. rotation (EQ-R). | ||
\b | ||
Legacy metrics: | ||
fid50k Frechet inception distance against 50k real images. | ||
kid50k Kernel inception distance against 50k real images. | ||
pr50k3 Precision and recall against 50k real images. | ||
is50k Inception score for CIFAR-10. | ||
""" | ||
dnnlib.util.Logger(should_flush=True) | ||
|
||
# Validate arguments. | ||
args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network_pkl, verbose=verbose,metric_pose_sample_mode=metric_pose_sample_mode) | ||
if not all(metric_main.is_valid_metric(metric) for metric in args.metrics): | ||
ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) | ||
if not args.num_gpus >= 1: | ||
ctx.fail('--gpus must be at least 1') | ||
|
||
# Load network. | ||
if not dnnlib.util.is_url(network_pkl, allow_file_urls=True) and not os.path.isfile(network_pkl): | ||
ctx.fail('--network must point to a file or URL') | ||
if args.verbose: | ||
print(f'Loading network from "{network_pkl}"...') | ||
with dnnlib.util.open_url(network_pkl, verbose=args.verbose) as f: | ||
network_dict = legacy.load_network_pkl(f) | ||
args.G = network_dict['G_ema'] # subclass of torch.nn.Module | ||
args.D = network_dict['D_ema'] | ||
|
||
args.identical_c_p = identical_c_p | ||
|
||
with open(pose_predict_kwargs, 'r') as f: | ||
args.pose_predict_kwargs = json.load(f) | ||
|
||
|
||
# Initialize dataset options. | ||
if data is not None: | ||
#args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data) | ||
args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.MaskLabeledDataset', | ||
img_path=data, | ||
seg_path = seg_data, | ||
back_repeat =1, | ||
use_labels=True, max_size=None, xflip=True, | ||
data_rebalance=False,data_rebalance_idx_file=None) | ||
elif network_dict['training_set_kwargs'] is not None: | ||
args.dataset_kwargs = dnnlib.EasyDict(network_dict['training_set_kwargs']) | ||
else: | ||
ctx.fail('Could not look up dataset options; please specify --data') | ||
|
||
# Finalize dataset options. | ||
args.dataset_kwargs.resolution = args.G.img_resolution | ||
args.dataset_kwargs.use_labels =True | ||
|
||
|
||
# Print dataset options. | ||
if args.verbose: | ||
print('Dataset options:') | ||
print(json.dumps(args.dataset_kwargs, indent=2)) | ||
|
||
# Locate run dir. | ||
args.run_dir = None | ||
if os.path.isfile(network_pkl): | ||
pkl_dir = os.path.dirname(network_pkl) | ||
if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')): | ||
args.run_dir = pkl_dir | ||
|
||
# Launch processes. | ||
if args.verbose: | ||
print('Launching processes...') | ||
torch.multiprocessing.set_start_method('spawn') | ||
with tempfile.TemporaryDirectory() as temp_dir: | ||
if args.num_gpus == 1: | ||
subprocess_fn(rank=0, args=args, temp_dir=temp_dir) | ||
else: | ||
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus) | ||
|
||
#---------------------------------------------------------------------------- | ||
|
||
if __name__ == "__main__": | ||
calc_metrics() # pylint: disable=no-value-for-parameter | ||
|
||
#---------------------------------------------------------------------------- |
Oops, something went wrong.