Skip to content

Latest commit

 

History

History
94 lines (71 loc) · 3.06 KB

eval_model.md

File metadata and controls

94 lines (71 loc) · 3.06 KB

Learning-based model evaluation

Overview

This tool takes a config file and MvP model checkpoints and performs evaluation on Shelf, Campus or CMU Panoptic dataset.

Preparation

  1. Download and install the Deformable package (Skip if you have done this step during model training)

Run the script:

sh scripts/download_install_deformable.sh
  1. Prepare Datasets

Follow the dataset tool tutorial to prepare the train and test data. Some pre-processed datasets are available for download here. Place the trainset_pesudo_gt and testset data including meta data under ROOT/xrmocap_data/DATASET.

  1. Prepare pre-trained model weights and model checkpoints

Download pre-trained backbone weights or MvP model checkpoints from here. Place the model weights under ROOT/weight/mvp.

  1. Prepare config files

Modify the config files in ROOT/configs/mvp if needed. Make sure the directories in config files match the directories and file names for your datasets and pre-traind model weights.

The final file structure ready for evaluation would be like:

xrmocap
├── xrmocap
├── tools
├── configs
├── weight
|   └── mvp
|       ├── xrmocap_mvp_campus-[version].pth
|       ├── xrmocap_mvp_shelf-[version].pth
|       ├── xrmocap_mvp_panoptic_5view-[version].pth
|       ├── xrmocap_mvp_panoptic_3view_3_12_23-[version].pth
|       └── xrmocap_pose_resnet50_panoptic-[version].pth
└── xrmocap_data
    ├── Shelf
    |   ├── xrmocap_meta_testset
    |   ├── xrmocap_meta_trainset_pesudo_gt
    |   ├── Camera0
    |   ├── ...
    |   └── Camera4
    ├── CampusSeq1
    └── panoptic
        ├── 160906_band4
        ├── 160906_ian5
        ├── ...
        └── 160906_pizza1

Example

Start evaluation with 8 GPUs with provided config file and pre-trained weights for Shelf dataset:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env tools/eval_model.py \
    --cfg configs/mvp/shelf_config/mvp_shelf.py \
    --model_path weight/mvp/xrmocap_mvp_shelf-22d1b5ed_20220831.pth

Alternatively, you can also run the script directly:

sh ROOT/scripts/eval_mvp.sh ${NUM_GPUS} ${CFG_FILE} ${MODEL_PATH}

Example:

sh ROOT/scripts/eval_mvp.sh 8 configs/mvp/shelf_config/mvp_shelf.py weight/mvp/xrmocap_mvp_shelf-22d1b5ed_20220831.pth

If you encounter a RuntimeError saying that dataloader's workers are out of shared memory, try changing the workers to 1 in the config file.

If you can run XRMoCap on a cluster managed with slurm, you can use the script:

sh ROOT/scripts/slurm_eval_mvp.sh ${PARTITION} ${NUM_GPUS} ${CFG_FILE} ${MODEL_PATH}

Example:

sh ROOT/scripts/slurm_eval_mvp.sh MyPartition 8 configs/mvp/shelf_config/mvp_shelf.py weight/mvp/xrmocap_mvp_shelf-22d1b5ed_20220831.pth