-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathnerf_render.py
98 lines (82 loc) · 3.62 KB
/
nerf_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn.functional as F
from torch import nn
from ..builder import RENDERS
from .base import BaseRender
@RENDERS.register_module()
class NerfRender(BaseRender):
def __init__(self,
white_bkgd=False,
raw_noise_std=0,
rgb_padding=0,
density_bias=0,
density_activation='relu',
**kwarg):
super().__init__() # 对于集成了nn.Module的类型,如果有可学习参数,必须加上这个
self.white_bkgd = white_bkgd
self.raw_noise_std = raw_noise_std
self.rgb_padding = rgb_padding
self.density_bias = density_bias
if density_activation == 'softplus': # Density activation.
self.density_activation = F.softplus
elif density_activation == 'relu':
self.density_activation = F.relu
else:
raise NotImplementedError
def get_disp_map(self, weights, z_vals):
depth_map = torch.sum(weights * z_vals, -1)
disp_map = 1. / torch.max(1e-10 * torch.ones_like(depth_map),
depth_map / torch.sum(weights, -1))
return disp_map
def get_weights(self, density_delta):
alpha = 1 - torch.exp(-density_delta)
weights = alpha * torch.cumprod(
torch.cat([
torch.ones(
(alpha.shape[0], 1)).to(alpha.device), 1. - alpha + 1e-10
], -1), -1)[:, :-1]
return weights
def forward(self, data, is_test=False):
"""Transforms model's predictions to semantically meaningful values.
Args:
data: inputs
is_test: is_test
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
disp_map: [num_rays]. Disparity map. Inverse of depth map.
acc_map: [num_rays]. Sum of weights along each ray.
weights: [num_rays, num_samples]. Weights assigned to each sampled color.
depth_map: [num_rays]. Estimated distance to object.
ret: return values
"""
raw = data['raw']
z_vals = data['z_vals']
# z_vals: [N_rays, N_samples] for nerf or [N_rays, N_samples+1] for mip
rays_d = data['rays_d']
raw_noise_std = 0 if is_test else self.raw_noise_std
device = raw.device
dists = z_vals[..., 1:] - z_vals[..., :-1]
if dists.shape[1] != raw.shape[1]: # if z_val: [N_rays, N_samples]
dists = torch.cat([
dists,
torch.Tensor([1e10]).to(device).expand(dists[..., :1].shape)
], -1) # [N_rays, N_samples]
dists = dists * torch.norm(rays_d[..., None, :], dim=-1)
rgb = torch.sigmoid(raw[..., :3]) # [N_rays, N_samples, 3]
rgb = rgb * (1 + 2 * self.rgb_padding) - self.rgb_padding
noise = 0.
if raw_noise_std > 0.:
noise = torch.randn(raw[..., 3].shape) * raw_noise_std
noise = noise.to(device)
density_delta = self.density_activation(raw[..., 3] + noise +
self.density_bias) * dists
weights = self.get_weights(density_delta)
rgb_map = torch.sum(weights[..., None] * rgb, -2) # [N_rays, 3]
disp_map = self.get_disp_map(weights, z_vals)
acc_map = torch.sum(weights, -1)
if self.white_bkgd:
rgb_map = rgb_map + (1. - acc_map[..., None])
ret = {'rgb': rgb_map, 'disp': disp_map, 'acc': acc_map}
data['weights'] = weights # 放在data里面,给sample函数用
return data, ret