forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadult_pscf.py
593 lines (503 loc) · 22.6 KB
/
adult_pscf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Training script for causal model for Adult dataset, using PSCF."""
import functools
import time
from typing import Any, List, Mapping, NamedTuple, Sequence
from absl import app
from absl import flags
from absl import logging
import haiku as hk
import jax
import jax.numpy as jnp
from ml_collections.config_flags import config_flags
import numpy as np
import optax
import pandas as pd
from sklearn import metrics
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow_probability.substrates import jax as tfp
from counterfactual_fairness import adult
from counterfactual_fairness import causal_network
from counterfactual_fairness import utils
from counterfactual_fairness import variational
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
'config', 'adult_pscf_config.py', 'Training configuration.')
LOG_EVERY = 100
# These are all aliases to callables which will return instances of
# particular distribution modules, or a Node itself. This is used to make
# subsequent code more legible.
Node = causal_network.Node
Gaussian = causal_network.Gaussian
MLPMultinomial = causal_network.MLPMultinomial
def build_input(train_data: pd.DataFrame, batch_size: int,
training_steps: int, shuffle_size: int = 10000):
"""See base class."""
num_epochs = (training_steps // batch_size) + 1
ds = utils.get_dataset(train_data, batch_size, shuffle_size,
num_epochs=num_epochs)
ds = ds.prefetch(tf.data.AUTOTUNE)
return iter(tfds.as_numpy(ds))
class CausalNetOutput(NamedTuple):
q_hidden_obs: Sequence[tfp.distributions.Distribution]
p_hidden: Sequence[tfp.distributions.Distribution]
hidden_samples: Sequence[jnp.ndarray]
log_p_obs_hidden: jnp.ndarray
is_male: jnp.ndarray # indicates which elements of the batch correspond to
# male individuals
def build_causal_graph(train_data: pd.DataFrame, column_names: List[str],
inputs: jnp.ndarray):
"""Build the causal graph of the model."""
make_multinomial = functools.partial(
causal_network.MLPMultinomial.from_frame, hidden_shape=(100,))
make_gaussian = functools.partial(
causal_network.Gaussian, hidden_shape=(100,))
# Construct the graphical model. Each random variable is represented by an
# instance of the `Node` class, as discussed in that class's docstring.
# The following nodes have no parents, and thus the distribution modules
# will not be conditional on anything -- they simply represent priors.
node_a = Node(MLPMultinomial.from_frame(train_data, 'sex'))
node_c1 = Node(MLPMultinomial.from_frame(train_data, 'native-country'))
node_c2 = Node(Gaussian('age', column_names.index('age')))
# These are all hidden nodes, that do not correspond to any actual data in
# pandas dataframe loaded previously. We therefore are permitted to control
# the dimensionality of these nodes as we wish (with the `dim` argument).
# The distribution module here should be interpreted as saying that we are
# imposing a multi-modal prior (a mixture of Gaussians) on each latent
# variable.
node_hm = Node(causal_network.GaussianMixture('hm', 10, dim=2), hidden=True)
node_hl = Node(causal_network.GaussianMixture('hl', 10, dim=2), hidden=True)
node_hr1 = Node(
causal_network.GaussianMixture('hr1', 10, dim=2), hidden=True)
node_hr2 = Node(
causal_network.GaussianMixture('hr2', 10, dim=2), hidden=True)
node_hr3 = Node(
causal_network.GaussianMixture('hr3', 10, dim=2), hidden=True)
# The rest of the graph is now constructed; the order of construction is
# important, so we can inform each node of its parents.
# Note that in the paper we simply have one node called "R", but here it is
# separated into three separate `Node` instances. This is necessary since
# each node can only represent a single quantity in the dataframe.
node_m = Node(
make_multinomial(train_data, 'marital-status'),
[node_a, node_hm, node_c1, node_c2])
node_l = Node(
make_gaussian('education-num', column_names.index('education-num')),
[node_a, node_hl, node_c1, node_c2, node_m])
node_r1 = Node(
make_multinomial(train_data, 'occupation'),
[node_a, node_c1, node_c2, node_m, node_l])
node_r2 = Node(
make_gaussian('hours-per-week', column_names.index('hours-per-week')),
[node_a, node_c1, node_c2, node_m, node_l])
node_r3 = Node(
make_multinomial(train_data, 'workclass'),
[node_a, node_c1, node_c2, node_m, node_l])
node_y = Node(
MLPMultinomial.from_frame(train_data, 'income'),
[node_a, node_c1, node_c2, node_m, node_l, node_r1, node_r2, node_r3])
# We now construct several (self-explanatory) collections of nodes. These
# will be used at various points later in the code, and serve to provide
# greater semantic interpretability.
observable_nodes = (node_a, node_c1, node_c2, node_l, node_m, node_r1,
node_r2, node_r3, node_y)
# The nodes on which each latent variable is conditionally dependent.
# Note that Y is not in this list, since all of its dependencies are
# included below, and further it does not depend directly on Hm.
nodes_on_which_hm_depends = (node_a, node_c1, node_c2, node_m)
nodes_on_which_hl_depends = (node_a, node_c1, node_c2, node_m, node_l)
nodes_on_which_hr1_depends = (node_a, node_c1, node_c2, node_m, node_l,
node_r1)
nodes_on_which_hr2_depends = (node_a, node_c1, node_c2, node_m, node_l,
node_r2)
nodes_on_which_hr3_depends = (node_a, node_c1, node_c2, node_m, node_l,
node_r3)
hidden_nodes = (node_hm, node_hl, node_hr1, node_hr2, node_hr3)
# Function to create the distribution needed for variational inference. This
# is the same for each latent variable.
def make_q_x_obs_module(node):
"""Make a Variational module for the given hidden variable."""
assert node.hidden
return variational.Variational(
common_layer_sizes=(20, 20), output_dim=node.dim)
# For each latent variable, we first construct a Haiku module (using the
# function above), and then connect it to the graph using the node's
# value. As described in more detail in the documentation for `Node`,
# these values represent actual observed data. Therefore we will later
# be connecting these same modules to the graph in different ways in order
# to perform fair inference.
q_hm_obs_module = make_q_x_obs_module(node_hm)
q_hl_obs_module = make_q_x_obs_module(node_hl)
q_hr1_obs_module = make_q_x_obs_module(node_hr1)
q_hr2_obs_module = make_q_x_obs_module(node_hr2)
q_hr3_obs_module = make_q_x_obs_module(node_hr3)
causal_network.populate(observable_nodes, inputs)
q_hm_obs = q_hm_obs_module(
*(node.observed_value for node in nodes_on_which_hm_depends))
q_hl_obs = q_hl_obs_module(
*(node.observed_value for node in nodes_on_which_hl_depends))
q_hr1_obs = q_hr1_obs_module(
*(node.observed_value for node in nodes_on_which_hr1_depends))
q_hr2_obs = q_hr2_obs_module(
*(node.observed_value for node in nodes_on_which_hr2_depends))
q_hr3_obs = q_hr3_obs_module(
*(node.observed_value for node in nodes_on_which_hr3_depends))
q_hidden_obs = (q_hm_obs, q_hl_obs, q_hr1_obs, q_hr2_obs, q_hr3_obs)
return observable_nodes, hidden_nodes, q_hidden_obs
def build_forward_fn(train_data: pd.DataFrame, column_names: List[str],
likelihood_multiplier: float):
"""Create the model's forward pass."""
def forward_fn(inputs: jnp.ndarray) -> CausalNetOutput:
"""Forward pass."""
observable_nodes, hidden_nodes, q_hidden = build_causal_graph(
train_data, column_names, inputs)
(node_hm, node_hl, node_hr1, node_hr2, node_hr3) = hidden_nodes
(node_a, _, _, _, _, _, _, _, node_y) = observable_nodes
# Log-likelihood function.
def log_p_obs_h(hm_value, hl_value, hr1_value, hr2_value, hr3_value):
"""Compute log P(A, C, M, L, R, Y | H)."""
# In order to create distributions like P(M | H_m, A, C), we need
# the value of H_m that we've been provided as an argument, rather than
# the value stored on H_m (which, in fact, will never be populated
# since H_m is unobserved).
# For compactness, we first construct the complete list of replacements.
node_to_replacement = {
node_hm: hm_value,
node_hl: hl_value,
node_hr1: hr1_value,
node_hr2: hr2_value,
node_hr3: hr3_value,
}
def log_prob_for_node(node):
"""Given a node, compute it's log probability for the given latents."""
log_prob = jnp.squeeze(
node.make_distribution(node_to_replacement).log_prob(
node.observed_value))
return log_prob
# We apply the likelihood multiplier to all likelihood terms except that
# for Y, the target. This is then added on separately in the line below.
sum_no_y = likelihood_multiplier * sum(
log_prob_for_node(node)
for node in observable_nodes
if node is not node_y)
return sum_no_y + log_prob_for_node(node_y)
q_hidden_obs = tuple(q_hidden)
p_hidden = tuple(node.distribution for node in hidden_nodes)
rnd_key = hk.next_rng_key()
hidden_samples = tuple(
q_hidden.sample(seed=rnd_key) for q_hidden in q_hidden_obs)
log_p_obs_hidden = log_p_obs_h(*hidden_samples)
# We need to split our batch of data into male and female parts.
is_male = jnp.equal(node_a.observed_value[:, 1], 1)
return CausalNetOutput(
q_hidden_obs=q_hidden_obs,
p_hidden=p_hidden,
hidden_samples=hidden_samples,
log_p_obs_hidden=log_p_obs_hidden,
is_male=is_male)
def fair_inference_fn(inputs: jnp.ndarray, batch_size: int,
num_prediction_samples: int):
"""Get the fair and unfair predictions for the given input."""
observable_nodes, hidden_nodes, q_hidden_obs = build_causal_graph(
train_data, column_names, inputs)
(node_hm, node_hl, node_hr1, node_hr2, node_hr3) = hidden_nodes
(node_a, node_c1, node_c2, node_l, node_m, node_r1, node_r2, node_r3,
node_y) = observable_nodes
(q_hm_obs, q_hl_obs, q_hr1_obs, q_hr2_obs, q_hr3_obs) = q_hidden_obs
rnd_key = hk.next_rng_key()
# *** FAIR INFERENCE ***
# To predict Y in a fair sense:
# * Infer Hm given observations.
# * Infer M using inferred Hm, baseline A, real C
# * Infer L using inferred Hl, M, real A, C
# * Infer Y using inferred M, baseline A, real C
# This is done by numerical integration, i.e. draw samples from
# p_fair(Y | A, C, M, L).
a_all_male = jnp.concatenate(
(jnp.zeros((batch_size, 1)), jnp.ones((batch_size, 1))),
axis=1)
# Here we take a num_samples per observation. This results to
# an array of shape:
# (num_samples, batch_size, hm_dim).
# However, forward pass is easier by reshaping to:
# (num_samples * batch_size, hm_dim).
hm_dim = 2
def expanded_sample(distribution):
return distribution.sample(
num_prediction_samples, seed=rnd_key).reshape(
(batch_size * num_prediction_samples, hm_dim))
hm_pred_sample = expanded_sample(q_hm_obs)
hl_pred_sample = expanded_sample(q_hl_obs)
hr1_pred_sample = expanded_sample(q_hr1_obs)
hr2_pred_sample = expanded_sample(q_hr2_obs)
hr3_pred_sample = expanded_sample(q_hr3_obs)
# The values of the observed nodes need to be tiled to match the dims
# of the above hidden samples. The `expand` function achieves this.
def expand(observed_value):
return jnp.tile(observed_value, (num_prediction_samples, 1))
expanded_a = expand(node_a.observed_value)
expanded_a_baseline = expand(a_all_male)
expanded_c1 = expand(node_c1.observed_value)
expanded_c2 = expand(node_c2.observed_value)
# For M, and all subsequent variables, we only generate one sample. This
# is because we already have *many* samples from the latent variables, and
# all we require is an independent sample from the distribution.
m_pred_sample = node_m.make_distribution({
node_a: expanded_a_baseline,
node_hm: hm_pred_sample,
node_c1: expanded_c1,
node_c2: expanded_c2}).sample(seed=rnd_key)
l_pred_sample = node_l.make_distribution({
node_a: expanded_a,
node_hl: hl_pred_sample,
node_c1: expanded_c1,
node_c2: expanded_c2,
node_m: m_pred_sample}).sample(seed=rnd_key)
r1_pred_sample = node_r1.make_distribution({
node_a: expanded_a,
node_hr1: hr1_pred_sample,
node_c1: expanded_c1,
node_c2: expanded_c2,
node_m: m_pred_sample,
node_l: l_pred_sample}).sample(seed=rnd_key)
r2_pred_sample = node_r2.make_distribution({
node_a: expanded_a,
node_hr2: hr2_pred_sample,
node_c1: expanded_c1,
node_c2: expanded_c2,
node_m: m_pred_sample,
node_l: l_pred_sample}).sample(seed=rnd_key)
r3_pred_sample = node_r3.make_distribution({
node_a: expanded_a,
node_hr3: hr3_pred_sample,
node_c1: expanded_c1,
node_c2: expanded_c2,
node_m: m_pred_sample,
node_l: l_pred_sample}).sample(seed=rnd_key)
# Finally, we sample from the distribution for Y. Like above, we only
# draw one sample per element in the array.
y_pred_sample = node_y.make_distribution({
node_a: expanded_a_baseline,
# node_a: expanded_a,
node_c1: expanded_c1,
node_c2: expanded_c2,
node_m: m_pred_sample,
node_l: l_pred_sample,
node_r1: r1_pred_sample,
node_r2: r2_pred_sample,
node_r3: r3_pred_sample}).sample(seed=rnd_key)
# Reshape back to (num_samples, batch_size, y_dim), undoing the expanding
# operation used for sampling.
y_pred_sample = y_pred_sample.reshape(
(num_prediction_samples, batch_size, -1))
# Now form an array of shape (batch_size, y_dim) by taking an expectation
# over the sample dimension. This represents the probability that the
# result is in each class.
y_pred_expectation = jnp.mean(y_pred_sample, axis=0)
# Find out the predicted y, for later use in a confusion matrix.
predicted_class_y_fair = utils.multinomial_class(y_pred_expectation)
# *** NAIVE INFERENCE ***
predicted_class_y_unfair = utils.multinomial_class(node_y.distribution)
return predicted_class_y_fair, predicted_class_y_unfair
return forward_fn, fair_inference_fn
def _loss_fn(
forward_fn,
beta: float,
mmd_sample_size: int,
constraint_multiplier: float,
constraint_ratio: float,
params: hk.Params,
rng: jnp.ndarray,
inputs: jnp.ndarray,
) -> jnp.ndarray:
"""Loss function definition."""
outputs = forward_fn(params, rng, inputs)
loss = _loss_klqp(outputs, beta)
# if (constraint_ratio * constraint_multiplier) > 0:
constraint_loss = 0.
# Create constraint penalty and add to overall loss term.
for distribution in outputs.q_hidden_obs:
constraint_loss += (constraint_ratio * constraint_multiplier *
utils.mmd_loss(distribution,
outputs.is_male,
mmd_sample_size,
rng))
# Optimisation - don't do the computation if the multiplier is set to zero.
loss += constraint_loss
return loss
def _evaluate(
fair_inference_fn,
params: hk.Params,
rng: jnp.ndarray,
inputs: jnp.ndarray,
batch_size: int,
num_prediction_samples: int,
):
"""Perform evaluation of fair inference."""
output = fair_inference_fn(params, rng, inputs,
batch_size, num_prediction_samples)
return output
def _loss_klqp(outputs: CausalNetOutput, beta: float) -> jnp.ndarray:
"""Compute the loss on data wrt params."""
expected_log_q_hidden_obs = sum(
jnp.sum(q_hidden_obs.log_prob(hidden_sample), axis=1) for q_hidden_obs,
hidden_sample in zip(outputs.q_hidden_obs, outputs.hidden_samples))
assert expected_log_q_hidden_obs.ndim == 1
# For log probabilities computed from distributions, we need to sum along
# the last axis, which takes the product of distributions for
# multi-dimensional hidden variables.
log_p_hidden = sum(
jnp.sum(p_hidden.log_prob(hidden_sample), axis=1) for p_hidden,
hidden_sample in zip(outputs.p_hidden, outputs.hidden_samples))
assert outputs.log_p_obs_hidden.ndim == 1
kl_divergence = (
beta * (expected_log_q_hidden_obs - log_p_hidden) -
outputs.log_p_obs_hidden)
return jnp.mean(kl_divergence)
class Updater:
"""A stateless abstraction around an init_fn/update_fn pair.
This extracts some common boilerplate from the training loop.
"""
def __init__(self, net_init, loss_fn, eval_fn,
optimizer: optax.GradientTransformation,
constraint_turn_on_step):
self._net_init = net_init
self._loss_fn = loss_fn
self._eval_fn = eval_fn
self._opt = optimizer
self._constraint_turn_on_step = constraint_turn_on_step
@functools.partial(jax.jit, static_argnums=0)
def init(self, init_rng, data):
"""Initializes state of the updater."""
params = self._net_init(init_rng, data)
opt_state = self._opt.init(params)
out = dict(
step=np.array(0),
rng=init_rng,
opt_state=opt_state,
params=params,
)
return out
@functools.partial(jax.jit, static_argnums=0)
def update(self, state: Mapping[str, Any], data: jnp.ndarray):
"""Updates the state using some data and returns metrics."""
rng = state['rng']
params = state['params']
constraint_ratio = (state['step'] > self._constraint_turn_on_step).astype(
float)
loss, g = jax.value_and_grad(self._loss_fn, argnums=1)(
constraint_ratio, params, rng, data)
updates, opt_state = self._opt.update(g, state['opt_state'])
params = optax.apply_updates(params, updates)
new_state = {
'step': state['step'] + 1,
'rng': rng,
'opt_state': opt_state,
'params': params,
}
new_metrics = {
'step': state['step'],
'loss': loss,
}
return new_state, new_metrics
@functools.partial(jax.jit, static_argnums=(0, 3, 4))
def evaluate(self, state: Mapping[str, Any], inputs: jnp.ndarray,
batch_size: int, num_prediction_samples: int):
"""Evaluate fair inference."""
rng = state['rng']
params = state['params']
fair_pred, unfair_pred = self._eval_fn(params, rng, inputs, batch_size,
num_prediction_samples)
return fair_pred, unfair_pred
def main(_):
flags_config = FLAGS.config
# Create the dataset.
train_data, test_data = adult.read_all_data(FLAGS.dataset_dir)
column_names = list(train_data.columns)
train_input = build_input(train_data, flags_config.batch_size,
flags_config.num_steps)
# Set up the model, loss, and updater.
forward_fn, fair_inference_fn = build_forward_fn(
train_data, column_names, flags_config.likelihood_multiplier)
forward_fn = hk.transform(forward_fn)
fair_inference_fn = hk.transform(fair_inference_fn)
loss_fn = functools.partial(_loss_fn, forward_fn.apply,
flags_config.beta,
flags_config.mmd_sample_size,
flags_config.constraint_multiplier)
eval_fn = functools.partial(_evaluate, fair_inference_fn.apply)
optimizer = optax.adam(flags_config.learning_rate)
updater = Updater(forward_fn.init, loss_fn, eval_fn,
optimizer, flags_config.constraint_turn_on_step)
# Initialize parameters.
logging.info('Initializing parameters...')
rng = jax.random.PRNGKey(42)
train_data = next(train_input)
state = updater.init(rng, train_data)
# Training loop.
logging.info('Starting train loop...')
prev_time = time.time()
for step in range(flags_config.num_steps):
train_data = next(train_input)
state, stats = updater.update(state, train_data)
if step % LOG_EVERY == 0:
steps_per_sec = LOG_EVERY / (time.time() - prev_time)
prev_time = time.time()
stats.update({'steps_per_sec': steps_per_sec})
logging.info({k: float(v) for k, v in stats.items()})
# Evaluate.
logging.info('Starting evaluation...')
test_input = build_input(test_data, flags_config.batch_size,
training_steps=0,
shuffle_size=0)
predicted_test_y = []
corrected_test_y = []
while True:
try:
eval_data = next(test_input)
# Now run the fair prediction; this projects the input to the latent space
# and then performs sampling.
predicted_class_y_fair, predicted_class_y_unfair = updater.evaluate(
state, eval_data, flags_config.batch_size,
flags_config.num_prediction_samples)
predicted_test_y.append(predicted_class_y_unfair)
corrected_test_y.append(predicted_class_y_fair)
# logging.info('Completed evaluation step %d', step)
except StopIteration:
logging.info('Finished evaluation')
break
# Join together the predictions from each batch.
test_y = np.concatenate(predicted_test_y, axis=0)
tweaked_test_y = np.concatenate(corrected_test_y, axis=0)
# Note the true values for computing accuracy and confusion matrices.
y_true = test_data['income'].cat.codes
# Make sure y_true is the same size
y_true = y_true[:len(test_y)]
test_accuracy = metrics.accuracy_score(y_true, test_y)
tweaked_test_accuracy = metrics.accuracy_score(
y_true, tweaked_test_y)
# Print out accuracy and confusion matrices.
logging.info('Accuracy (full model): %f', test_accuracy)
logging.info('Confusion matrix:')
logging.info(metrics.confusion_matrix(y_true, test_y))
logging.info('')
logging.info('Accuracy (tweaked with baseline: Male): %f',
tweaked_test_accuracy)
logging.info('Confusion matrix:')
logging.info(metrics.confusion_matrix(y_true, tweaked_test_y))
if __name__ == '__main__':
app.run(main)