forked from huangyangyi/ELICIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault.yaml
192 lines (158 loc) · 4.28 KB
/
default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
category: 'human_nerf'
##############################################3
## Network Specs
# modules
network_module: 'core.nets.human_nerf.network'
trainer_module: 'core.train.trainers.human_nerf.trainer'
lr_updater_module: 'core.train.trainers.human_nerf.lr_updaters.exp_decay'
optimizer_module: 'core.train.optimizers.human_nerf.optimizer'
# positional embedder -- canonical mlp
embedder:
module: "core.nets.human_nerf.embedders.fourier"
# positional embedder -- non-rigid motion mlp
non_rigid_embedder:
module: "core.nets.human_nerf.embedders.hannw_fourier"
# canonical mlp
canonical_mlp:
module: 'core.nets.human_nerf.canonical_mlps.mlp_rgb_sigma'
mlp_depth: 8 # layers in network
mlp_width: 256 # channels per layer
multires: 10 # log2 of max freq for positional encoding (3D location)
i_embed: 0 # set 0 for default positional encoding, -1 for none
# motion weights volume
mweight_volume:
module: 'core.nets.human_nerf.mweight_vol_decoders.deconv_vol_decoder'
embedding_size: 256
volume_size: 32
dst_voxel_size: 0.0625
# non-rigid motion mlp
non_rigid_motion_mlp:
module: 'core.nets.human_nerf.non_rigid_motion_mlps.mlp_offset'
condition_code_size: 69
mlp_width: 128
mlp_depth: 6
skips: [4]
multires: 6 # log2 of max freq for positional encoding (3D location)
i_embed: 0 # set 0 for default positional encoding, -1 for none
kick_in_iter: 10000
full_band_iter: 50000
# pose decoder
pose_decoder:
module: 'core.nets.human_nerf.pose_decoders.mlp_delta_body_pose'
embedding_size: 69
mlp_width: 256
mlp_depth: 4
##############################################3
## Data Configuration
train_keyfilter: ['rays',
'motion_bases', 'motion_weights_priors',
'cnl_bbox', 'dst_posevec_69']
test_keyfilter: ['rays', 'target_rgbs',
'motion_bases', 'motion_weights_priors',
'cnl_bbox', 'dst_posevec_69', 'pts']
train:
use_input_annot: False
use_huggingface: False
min_bodypart_pixels: 2000
sil_loss_inside_only: False
freeze_rigid_motion: False
train_albedo_only: False
resize_to_patchsize_by_mask: False
use_patch_dict: False
use_best_fit: False
with_vit: False
with_clip: False
reid_model: ''
start_frame: 0
perturb: 1. # only for training, set to 0. for no jitter, 1. for jitter
batch_size: 1
shuffle: True
drop_last: False
maxiter: 400000
lr: 0.0005 # 5e-4
lr_mweight_vol_decoder: 0.00005 # 5e-5
lr_pose_decoder: 0.00005 # 5e-5
lr_non_rigid_mlp: 0.00005 # 5e-5
lrate_decay: 500
optimizer: 'adam'
log_interval: 20
save_checkpt_interval: 2000
save_model_interval: 50000
ray_shoot_mode: 'patch'
lossweights:
lpips: 1.0
mse: 0.2
vit_resolution: 224
progress:
batch_size: 1
shuffle: False
drop_last: False
dump_interval: 5000
movement:
batch_size: 1
shuffle: False
drop_last: False
freeview:
batch_size: 1
shuffle: False
drop_last: False
frame_idx: 0
render_gt_view: False
use_gt_camera: False
dataset: ''
mesh:
batch_size: 1
shuffle: False
drop_last: False
frame_idx: 0
render_gt_view: True
dataset: ''
for_tet: False
tpose:
batch_size: 1
shuffle: False
drop_last: False
##############################################3
## Misc
sex: 'neutral'
total_bones: 24
bbox_offset: 0.3
load_net: latest
save_all: True # save all checkpoints
patch:
sample_subject_ratio: 0.8
N_patches: 6
size: 32 # [Patch] size of patch
N_samples: 128 # number of samples for each ray in coarse ray matching
perturb: 1. # only for training, set to 0. for no jitter, 1. for jitter
netchunk_per_gpu: 300000 # number of pts sent through network in parallel, decrease if running out of memory
chunk: 32768 # 32768=1024*32, number of rays processed in parallel, decrease if running out of memory
n_gpus: 1
show_alpha: False
show_truth: False
show_depth: False
textureless: False
ambient_light: 0.5
point_light: 0.5
segments:
body: 236
rightArm: 216
leftArm: 196
rightHand: 176
leftHand: 156
rightUpLeg: 136
leftUpLeg: 116
rightLeg: 96
leftLeg: 76
head: 56
neck: 36
symmetric:
leftArm: rightArm
leftHand: rightHand
leftUpLeg: rightUpLeg
leftLeg: rightLeg
body: body
fps: 60
voxel_size: [0.005, 0.005, 0.005]
mesh_th: 5.
render_th: 0.