forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
797 lines (671 loc) · 29.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
################################################################################
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
"""Implementation of Continual Unsupervised Representation Learning model."""
from absl import logging
import numpy as np
import sonnet as snt
import tensorflow.compat.v1 as tf
import tensorflow_probability as tfp
from curl import layers
from curl import utils
tfc = tf.compat.v1
# pylint: disable=g-long-lambda
# pylint: disable=redefined-outer-name
class SharedEncoder(snt.AbstractModule):
"""The shared encoder module, mapping input x to hiddens."""
def __init__(self, encoder_type, n_enc, enc_strides, name='shared_encoder'):
"""The shared encoder function, mapping input x to hiddens.
Args:
encoder_type: str, type of encoder, either 'conv' or 'multi'
n_enc: list, number of hidden units per layer in the encoder
enc_strides: list, stride in each layer (only for 'conv' encoder_type)
name: str, module name used for tf scope.
"""
super(SharedEncoder, self).__init__(name=name)
self._encoder_type = encoder_type
if encoder_type == 'conv':
self.shared_encoder = layers.SharedConvModule(
filters=n_enc,
strides=enc_strides,
kernel_size=3,
activation=tf.nn.relu)
elif encoder_type == 'multi':
self.shared_encoder = snt.nets.MLP(
name='mlp_shared_encoder',
output_sizes=n_enc,
activation=tf.nn.relu,
activate_final=True)
else:
raise ValueError('Unknown encoder_type {}'.format(encoder_type))
def _build(self, x, is_training):
if self._encoder_type == 'multi':
self.conv_shapes = None
x = snt.BatchFlatten()(x)
return self.shared_encoder(x)
else:
output = self.shared_encoder(x)
self.conv_shapes = self.shared_encoder.conv_shapes
return output
def cluster_encoder_fn(hiddens, n_y_active, n_y, is_training=True):
"""The cluster encoder function, modelling q(y | x).
Args:
hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`.
n_y_active: Tensor, the number of active components.
n_y: int, number of maximum components allowed (used for tensor size)
is_training: Boolean, whether to build the training graph or an evaluation
graph.
Returns:
The distribution `q(y | x)`.
"""
del is_training # unused for now
with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]):
lin = snt.Linear(n_y, name='mlp_cluster_encoder_final')
logits = lin(hiddens)
# Only use the first n_y_active components, and set the remaining to zero.
if n_y > 1:
probs = tf.nn.softmax(logits[:, :n_y_active])
logging.info('Cluster softmax active probs shape: %s', str(probs.shape))
paddings1 = tf.stack([tf.constant(0), tf.constant(0)], axis=0)
paddings2 = tf.stack([tf.constant(0), n_y - n_y_active], axis=0)
paddings = tf.stack([paddings1, paddings2], axis=1)
probs = tf.pad(probs, paddings) + 0.0 * logits + 1e-12
else:
probs = tf.ones_like(logits)
logging.info('Cluster softmax probs shape: %s', str(probs.shape))
return tfp.distributions.OneHotCategorical(probs=probs)
def latent_encoder_fn(hiddens, y, n_y, n_z, is_training=True):
"""The latent encoder function, modelling q(z | x, y).
Args:
hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`.
y: Categorical cluster variable, `Tensor` of size `[B, n_y]`.
n_y: int, number of dims of y.
n_z: int, number of dims of z.
is_training: Boolean, whether to build the training graph or an evaluation
graph.
Returns:
The Gaussian distribution `q(z | x, y)`.
"""
del is_training # unused for now
with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]):
# Logits for both mean and variance
n_logits = 2 * n_z
all_logits = []
for k in range(n_y):
lin = snt.Linear(n_logits, name='mlp_latent_encoder_' + str(k))
all_logits.append(lin(hiddens))
# Sum over cluster components.
all_logits = tf.stack(all_logits) # [n_y, B, n_logits]
logits = tf.einsum('ij,jik->ik', y, all_logits)
# Compute distribution from logits.
return utils.generate_gaussian(
logits=logits, sigma_nonlin='softplus', sigma_param='var')
def data_decoder_fn(z,
y,
output_type,
output_shape,
decoder_type,
n_dec,
dec_up_strides,
n_x,
n_y,
shared_encoder_conv_shapes=None,
is_training=True,
test_local_stats=True):
"""The data decoder function, modelling p(x | z).
Args:
z: Latent variables, `Tensor` of size `[B, n_z]`.
y: Categorical cluster variable, `Tensor` of size `[B, n_y]`.
output_type: str, output distribution ('bernoulli' or 'quantized_normal').
output_shape: list, shape of output (not including batch dimension).
decoder_type: str, 'single', 'multi', or 'deconv'.
n_dec: list, number of hidden units per layer in the decoder
dec_up_strides: list, stride in each layer (only for 'deconv' decoder_type).
n_x: int, number of dims of x.
n_y: int, number of dims of y.
shared_encoder_conv_shapes: the shapes of the activations of the
intermediate layers of the encoder,
is_training: Boolean, whether to build the training graph or an evaluation
graph.
test_local_stats: Boolean, whether to use the test batch statistics at test
time for batch norm (default) or the moving averages.
Returns:
The Bernoulli distribution `p(x | z)`.
"""
if output_type == 'bernoulli':
output_dist = lambda x: tfp.distributions.Bernoulli(logits=x)
n_out_factor = 1
out_shape = list(output_shape)
else:
raise NotImplementedError
if len(z.shape) != 2:
raise NotImplementedError('The data decoder function expects `z` to be '
'2D, but its shape was %s instead.' %
str(z.shape))
if len(y.shape) != 2:
raise NotImplementedError('The data decoder function expects `y` to be '
'2D, but its shape was %s instead.' %
str(y.shape))
# Upsample layer (deconvolutional, bilinear, ..).
if decoder_type == 'deconv':
# First, check that the encoder is convolutional too (needed for batchnorm)
if shared_encoder_conv_shapes is None:
raise ValueError('Shared encoder does not contain conv_shapes.')
num_output_channels = output_shape[-1]
conv_decoder = UpsampleModule(
filters=n_dec,
kernel_size=3,
activation=tf.nn.relu,
dec_up_strides=dec_up_strides,
enc_conv_shapes=shared_encoder_conv_shapes,
n_c=num_output_channels * n_out_factor,
method=decoder_type)
logits = conv_decoder(
z, is_training=is_training, test_local_stats=test_local_stats)
logits = tf.reshape(logits, [-1] + out_shape) # n_out_factor in last dim
# Multiple MLP decoders, one for each component.
elif decoder_type == 'multi':
all_logits = []
for k in range(n_y):
mlp_decoding = snt.nets.MLP(
name='mlp_latent_decoder_' + str(k),
output_sizes=n_dec + [n_x * n_out_factor],
activation=tf.nn.relu,
activate_final=False)
logits = mlp_decoding(z)
all_logits.append(logits)
all_logits = tf.stack(all_logits)
logits = tf.einsum('ij,jik->ik', y, all_logits)
logits = tf.reshape(logits, [-1] + out_shape) # Back to 4D
# Single (shared among components) MLP decoder.
elif decoder_type == 'single':
mlp_decoding = snt.nets.MLP(
name='mlp_latent_decoder',
output_sizes=n_dec + [n_x * n_out_factor],
activation=tf.nn.relu,
activate_final=False)
logits = mlp_decoding(z)
logits = tf.reshape(logits, [-1] + out_shape) # Back to 4D
else:
raise ValueError('Unknown decoder_type {}'.format(decoder_type))
return output_dist(logits)
def latent_decoder_fn(y, n_z, is_training=True):
"""The latent decoder function, modelling p(z | y).
Args:
y: Categorical cluster variable, `Tensor` of size `[B, n_y]`.
n_z: int, number of dims of z.
is_training: Boolean, whether to build the training graph or an evaluation
graph.
Returns:
The Gaussian distribution `p(z | y)`.
"""
del is_training # Unused for now.
if len(y.shape) != 2:
raise NotImplementedError('The latent decoder function expects `y` to be '
'2D, but its shape was %s instead.' %
str(y.shape))
lin_mu = snt.Linear(n_z, name='latent_prior_mu')
lin_sigma = snt.Linear(n_z, name='latent_prior_sigma')
mu = lin_mu(y)
sigma = lin_sigma(y)
logits = tf.concat([mu, sigma], axis=1)
return utils.generate_gaussian(
logits=logits, sigma_nonlin='softplus', sigma_param='var')
class Curl(object):
"""CURL model class."""
def __init__(self,
prior,
latent_decoder,
data_decoder,
shared_encoder,
cluster_encoder,
latent_encoder,
n_y_active,
kly_over_batch=False,
is_training=True,
name='curl'):
self.scope_name = name
self._shared_encoder = shared_encoder
self._prior = prior
self._latent_decoder = latent_decoder
self._data_decoder = data_decoder
self._cluster_encoder = cluster_encoder
self._latent_encoder = latent_encoder
self._n_y_active = n_y_active
self._kly_over_batch = kly_over_batch
self._is_training = is_training
self._cache = {}
def sample(self, sample_shape=(), y=None, mean=False):
"""Draws a sample from the learnt distribution p(x).
Args:
sample_shape: `int` or 0D `Tensor` giving the number of samples to return.
If empty tuple (default value), 1 sample will be returned.
y: Optional, the one hot label on which to condition the sample.
mean: Boolean, if True the expected value of the output distribution is
returned, otherwise samples from the output distribution.
Returns:
Sample tensor of shape `[B * N, ...]` where `B` is the batch size of
the prior, `N` is the number of samples requested, and `...` represents
the shape of the observations.
Raises:
ValueError: If both `sample_shape` and `n` are provided.
ValueError: If `sample_shape` has rank > 0 or if `sample_shape`
is an int that is < 1.
"""
with tf.name_scope('{}_sample'.format(self.scope_name)):
if y is None:
y = tf.to_float(self.compute_prior().sample(sample_shape))
if y.shape.ndims > 2:
y = snt.MergeDims(start=0, size=y.shape.ndims - 1, name='merge_y')(y)
z = self._latent_decoder(y, is_training=self._is_training)
if mean:
samples = self.predict(z.sample(), y).mean()
else:
samples = self.predict(z.sample(), y).sample()
return samples
def reconstruct(self, x, use_mode=True, use_mean=False):
"""Reconstructs the given observations.
Args:
x: Observed `Tensor`.
use_mode: Boolean, if true, take the argmax over q(y|x)
use_mean: Boolean, if true, use pixel-mean for reconstructions.
Returns:
The reconstructed samples x ~ p(x | y~q(y|x), z~q(z|x, y)).
"""
hiddens = self._shared_encoder(x, is_training=self._is_training)
qy = self.infer_cluster(hiddens)
y_sample = qy.mode() if use_mode else qy.sample()
y_sample = tf.to_float(y_sample)
qz = self.infer_latent(hiddens, y_sample)
p = self.predict(qz.sample(), y_sample)
if use_mean:
return p.mean()
else:
return p.sample()
def log_prob(self, x):
"""Redirects to log_prob_elbo with a warning."""
logging.warn('log_prob is actually a lower bound')
return self.log_prob_elbo(x)
def log_prob_elbo(self, x):
"""Returns evidence lower bound."""
log_p_x, kl_y, kl_z = self.log_prob_elbo_components(x)[:3]
return log_p_x - kl_y - kl_z
def log_prob_elbo_components(self, x, y=None, reduce_op=tf.reduce_sum):
"""Returns the components used in calculating the evidence lower bound.
Args:
x: Observed variables, `Tensor` of size `[B, I]` where `I` is the size of
a flattened input.
y: Optional labels, `Tensor` of size `[B, I]` where `I` is the size of a
flattened input.
reduce_op: The op to use for reducing across non-batch dimensions.
Typically either `tf.reduce_sum` or `tf.reduce_mean`.
Returns:
`log p(x|y,z)` of shape `[B]` where `B` is the batch size.
`KL[q(y|x) || p(y)]` of shape `[B]` where `B` is the batch size.
`KL[q(z|x,y) || p(z|y)]` of shape `[B]` where `B` is the batch size.
"""
cache_key = (x,)
# Checks if the output graph for this inputs has already been computed.
if cache_key in self._cache:
return self._cache[cache_key]
with tf.name_scope('{}_log_prob_elbo'.format(self.scope_name)):
hiddens = self._shared_encoder(x, is_training=self._is_training)
# 1) Compute KL[q(y|x) || p(y)] from x, and keep distribution q_y around
kl_y, q_y = self._kl_and_qy(hiddens) # [B], distribution
# For the next two terms, we need to marginalise over all y.
# First, construct every possible y indexing (as a one hot) and repeat it
# for every element in the batch [n_y_active, B, n_y].
# Note that the onehot have dimension of all y, while only the codes
# corresponding to active components are instantiated
bs, n_y = q_y.probs.shape
all_y = tf.tile(
tf.expand_dims(tf.one_hot(tf.range(self._n_y_active),
n_y), axis=1),
multiples=[1, bs, 1])
# 2) Compute KL[q(z|x,y) || p(z|y)] (for all possible y), and keep z's
# around [n_y, B] and [n_y, B, n_z]
kl_z_all, z_all = tf.map_fn(
fn=lambda y: self._kl_and_z(hiddens, y),
elems=all_y,
dtype=(tf.float32, tf.float32),
name='elbo_components_z_map')
kl_z_all = tf.transpose(kl_z_all, name='kl_z_all')
# Now take the expectation over y (scale by q(y|x))
y_logits = q_y.logits[:, :self._n_y_active] # [B, n_y]
y_probs = q_y.probs[:, :self._n_y_active] # [B, n_y]
y_probs = y_probs / tf.reduce_sum(y_probs, axis=1, keepdims=True)
kl_z = tf.reduce_sum(y_probs * kl_z_all, axis=1)
# 3) Evaluate logp and recon, i.e., log and mean of p(x|z,[y])
# (conditioning on y only in the `multi` decoder_type case, when
# train_supervised is True). Here we take the reconstruction from each
# possible component y and take its log prob. [n_y, B, Ix, Iy, Iz]
log_p_x_all = tf.map_fn(
fn=lambda val: self.predict(val[0], val[1]).log_prob(x),
elems=(z_all, all_y),
dtype=tf.float32,
name='elbo_components_logpx_map')
# Sum log probs over all dimensions apart from the first two (n_y, B),
# i.e., over I. Use einsum to construct higher order multiplication.
log_p_x_all = snt.BatchFlatten(preserve_dims=2)(log_p_x_all) # [n_y,B,I]
# Note, this is E_{q(y|x)} [ log p(x | z, y)], i.e., we scale log_p_x_all
# by q(y|x).
log_p_x = tf.einsum('ij,jik->ik', y_probs, log_p_x_all) # [B, I]
# We may also use a supervised loss for some samples [B, n_y]
if y is not None:
self.y_label = tf.one_hot(y, n_y)
else:
self.y_label = tfc.placeholder(
shape=[bs, n_y], dtype=tf.float32, name='y_label')
# This is computing log p(x | z, y=true_y)], which is basically equivalent
# to indexing into the correct element of `log_p_x_all`.
log_p_x_sup = tf.einsum('ij,jik->ik',
self.y_label[:, :self._n_y_active],
log_p_x_all) # [B, I]
kl_z_sup = tf.einsum('ij,ij->i',
self.y_label[:, :self._n_y_active],
kl_z_all) # [B]
# -log q(y=y_true | x)
kl_y_sup = tf.nn.sparse_softmax_cross_entropy_with_logits( # [B]
labels=tf.argmax(self.y_label[:, :self._n_y_active], axis=1),
logits=y_logits)
# Reduce over all dimension except batch.
dims_x = [k for k in range(1, log_p_x.shape.ndims)]
log_p_x = reduce_op(log_p_x, dims_x, name='log_p_x')
log_p_x_sup = reduce_op(log_p_x_sup, dims_x, name='log_p_x_sup')
# Store values needed externally
self.q_y = q_y
self.log_p_x_all = tf.transpose(
reduce_op(
log_p_x_all,
-1, # [B, n_y]
name='log_p_x_all'))
self.kl_z_all = kl_z_all
self.y_probs = y_probs
self._cache[cache_key] = (log_p_x, kl_y, kl_z, log_p_x_sup, kl_y_sup,
kl_z_sup)
return log_p_x, kl_y, kl_z, log_p_x_sup, kl_y_sup, kl_z_sup
def _kl_and_qy(self, hiddens):
"""Returns analytical or sampled KL div and the distribution q(y | x).
Args:
hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`.
Returns:
Pair `(kl, y)`, where `kl` is the KL divergence (a `Tensor` with shape
`[B]`, where `B` is the batch size), and `y` is a sample from the
categorical encoding distribution.
"""
with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]):
q = self.infer_cluster(hiddens) # q(y|x)
p = self.compute_prior() # p(y)
try:
# Take the average proportions over whole batch then repeat it in each row
# before computing the KL
if self._kly_over_batch:
probs = tf.reduce_mean(
q.probs, axis=0, keepdims=True) * tf.ones_like(q.probs)
qmean = tfp.distributions.OneHotCategorical(probs=probs)
kl = tfp.distributions.kl_divergence(qmean, p)
else:
kl = tfp.distributions.kl_divergence(q, p)
except NotImplementedError:
y = q.sample(name='y_sample')
logging.warn('Using sampling KLD for y')
log_p_y = p.log_prob(y, name='log_p_y')
log_q_y = q.log_prob(y, name='log_q_y')
# Reduce over all dimension except batch.
sum_axis_p = [k for k in range(1, log_p_y.get_shape().ndims)]
log_p_y = tf.reduce_sum(log_p_y, sum_axis_p)
sum_axis_q = [k for k in range(1, log_q_y.get_shape().ndims)]
log_q_y = tf.reduce_sum(log_q_y, sum_axis_q)
kl = log_q_y - log_p_y
# Reduce over all dimension except batch.
sum_axis_kl = [k for k in range(1, kl.get_shape().ndims)]
kl = tf.reduce_sum(kl, sum_axis_kl, name='kl')
return kl, q
def _kl_and_z(self, hiddens, y):
"""Returns KL[q(z|y,x) || p(z|y)] and a sample for z from q(z|y,x).
Returns the analytical KL divergence KL[q(z|y,x) || p(z|y)] if one is
available (as registered with `kullback_leibler.RegisterKL`), or a sampled
KL divergence otherwise (in this case the returned sample is the one used
for the KL divergence).
Args:
hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`.
y: Categorical cluster random variable, `Tensor` of size `[B, n_y]`.
Returns:
Pair `(kl, z)`, where `kl` is the KL divergence (a `Tensor` with shape
`[B]`, where `B` is the batch size), and `z` is a sample from the encoding
distribution.
"""
with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]):
q = self.infer_latent(hiddens, y) # q(z|x,y)
p = self.generate_latent(y) # p(z|y)
z = q.sample(name='z')
try:
kl = tfp.distributions.kl_divergence(q, p)
except NotImplementedError:
logging.warn('Using sampling KLD for z')
log_p_z = p.log_prob(z, name='log_p_z_y')
log_q_z = q.log_prob(z, name='log_q_z_xy')
# Reduce over all dimension except batch.
sum_axis_p = [k for k in range(1, log_p_z.get_shape().ndims)]
log_p_z = tf.reduce_sum(log_p_z, sum_axis_p)
sum_axis_q = [k for k in range(1, log_q_z.get_shape().ndims)]
log_q_z = tf.reduce_sum(log_q_z, sum_axis_q)
kl = log_q_z - log_p_z
# Reduce over all dimension except batch.
sum_axis_kl = [k for k in range(1, kl.get_shape().ndims)]
kl = tf.reduce_sum(kl, sum_axis_kl, name='kl')
return kl, z
def infer_latent(self, hiddens, y=None, use_mean_y=False):
"""Performs inference over the latent variable z.
Args:
hiddens: The shared encoder activations, 4D `Tensor` of size `[B, ...]`.
y: Categorical cluster variable, `Tensor` of size `[B, ...]`.
use_mean_y: Boolean, whether to take the mean encoding over all y.
Returns:
The distribution `q(z|x, y)`, which on sample produces tensors of size
`[N, B, ...]` where `B` is the batch size of `x` and `y`, and `N` is the
number of samples and `...` represents the shape of the latent variables.
"""
with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]):
if y is None:
y = tf.to_float(self.infer_cluster(hiddens).mode())
if use_mean_y:
# If use_mean_y, then y must be probabilities
all_y = tf.tile(
tf.expand_dims(tf.one_hot(tf.range(y.shape[1]), y.shape[1]), axis=1),
multiples=[1, y.shape[0], 1])
# Compute z KL from x (for all possible y), and keep z's around
z_all = tf.map_fn(
fn=lambda y: self._latent_encoder(
hiddens, y, is_training=self._is_training).mean(),
elems=all_y,
dtype=tf.float32)
return tf.einsum('ij,jik->ik', y, z_all)
else:
return self._latent_encoder(hiddens, y, is_training=self._is_training)
def generate_latent(self, y):
"""Use the generative model to compute latent variable z, given a y.
Args:
y: Categorical cluster variable, `Tensor` of size `[B, ...]`.
Returns:
The distribution `p(z|y)`, which on sample produces tensors of size
`[N, B, ...]` where `B` is the batch size of `x`, and `N` is the number of
samples asked and `...` represents the shape of the latent variables.
"""
return self._latent_decoder(y, is_training=self._is_training)
def get_shared_rep(self, x, is_training):
"""Gets the shared representation from a given input x.
Args:
x: Observed variables, `Tensor` of size `[B, I]` where `I` is the size of
a flattened input.
is_training: bool, whether this constitutes training data or not.
Returns:
`log p(x|y,z)` of shape `[B]` where `B` is the batch size.
`KL[q(y|x) || p(y)]` of shape `[B]` where `B` is the batch size.
`KL[q(z|x,y) || p(z|y)]` of shape `[B]` where `B` is the batch size.
"""
return self._shared_encoder(x, is_training)
def infer_cluster(self, hiddens):
"""Performs inference over the categorical variable y.
Args:
hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`.
Returns:
The distribution `q(y|x)`, which on sample produces tensors of size
`[N, B, ...]` where `B` is the batch size of `x`, and `N` is the number of
samples asked and `...` represents the shape of the latent variables.
"""
with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]):
return self._cluster_encoder(hiddens, is_training=self._is_training)
def predict(self, z, y):
"""Computes prediction over the observed variables.
Args:
z: Latent variables, `Tensor` of size `[B, ...]`.
y: Categorical cluster variable, `Tensor` of size `[B, ...]`.
Returns:
The distribution `p(x|z)`, which on sample produces tensors of size
`[N, B, ...]` where `N` is the number of samples asked.
"""
encoder_conv_shapes = getattr(self._shared_encoder, 'conv_shapes', None)
return self._data_decoder(
z,
y,
shared_encoder_conv_shapes=encoder_conv_shapes,
is_training=self._is_training)
def compute_prior(self):
"""Computes prior over the latent variables.
Returns:
The distribution `p(y)`, which on sample produces tensors of size
`[N, ...]` where `N` is the number of samples asked and `...` represents
the shape of the latent variables.
"""
return self._prior()
class UpsampleModule(snt.AbstractModule):
"""Convolutional decoder.
If `method` is 'deconv' apply transposed convolutions with stride 2,
otherwise apply the `method` upsampling function and then smooth with a
stride 1x1 convolution.
Params:
-------
filters: list, where the first element is the number of filters of the initial
MLP layer and the remaining elements are the number of filters of the
upsampling layers.
kernel_size: the size of the convolutional kernels. The same size will be
used in all convolutions.
activation: an activation function, applied to all layers but the last.
dec_up_strides: list, the upsampling factors of each upsampling convolutional
layer.
enc_conv_shapes: list, the shapes of the input and of all the intermediate
feature maps of the convolutional layers in the encoder.
n_c: the number of output channels.
"""
def __init__(self,
filters,
kernel_size,
activation,
dec_up_strides,
enc_conv_shapes,
n_c,
method='nn',
name='upsample_module'):
super(UpsampleModule, self).__init__(name=name)
assert len(filters) == len(dec_up_strides) + 1, (
'The decoder\'s filters should contain one element more than the '
'decoder\'s up stride list, but has %d elements instead of %d.\n'
'Decoder filters: %s\nDecoder up strides: %s' %
(len(filters), len(dec_up_strides) + 1, str(filters),
str(dec_up_strides)))
self._filters = filters
self._kernel_size = kernel_size
self._activation = activation
self._dec_up_strides = dec_up_strides
self._enc_conv_shapes = enc_conv_shapes
self._n_c = n_c
if method == 'deconv':
self._conv_layer = tf.layers.Conv2DTranspose
self._method = method
else:
self._conv_layer = tf.layers.Conv2D
self._method = getattr(tf.image.ResizeMethod, method.upper())
self._method_str = method.capitalize()
def _build(self, z, is_training=True, test_local_stats=True, use_bn=False):
batch_norm_args = {
'is_training': is_training,
'test_local_stats': test_local_stats
}
method = self._method
# Cycle over the encoder shapes backwards, to build a symmetrical decoder.
enc_conv_shapes = self._enc_conv_shapes[::-1]
strides = self._dec_up_strides
# We store the heights and widths of the encoder feature maps that are
# unique, i.e., the ones right after a layer with stride != 1. These will be
# used as a target to potentially crop the upsampled feature maps.
unique_hw = np.unique([(el[1], el[2]) for el in enc_conv_shapes], axis=0)
unique_hw = unique_hw.tolist()[::-1]
unique_hw.pop() # Drop the initial shape
# The first filter is an MLP.
mlp_filter, conv_filters = self._filters[0], self._filters[1:]
# The first shape is used after the MLP to go to 4D.
layers = [z]
# The shape of the first enc is used after the MLP to go back to 4D.
dec_mlp = snt.nets.MLP(
name='dec_mlp_projection',
output_sizes=[mlp_filter, np.prod(enc_conv_shapes[0][1:])],
use_bias=not use_bn,
activation=self._activation,
activate_final=True)
upsample_mlp_flat = dec_mlp(z)
if use_bn:
upsample_mlp_flat = snt.BatchNorm(scale=True)(upsample_mlp_flat,
**batch_norm_args)
layers.append(upsample_mlp_flat)
upsample = tf.reshape(upsample_mlp_flat, enc_conv_shapes[0])
layers.append(upsample)
for i, (filter_i, stride_i) in enumerate(zip(conv_filters, strides), 1):
if method != 'deconv' and stride_i > 1:
upsample = tf.image.resize_images(
upsample, [stride_i * el for el in upsample.shape.as_list()[1:3]],
method=method,
name='upsample_' + str(i))
upsample = self._conv_layer(
filters=filter_i,
kernel_size=self._kernel_size,
padding='same',
use_bias=not use_bn,
activation=self._activation,
strides=stride_i if method == 'deconv' else 1,
name='upsample_conv_' + str(i))(
upsample)
if use_bn:
upsample = snt.BatchNorm(scale=True)(upsample, **batch_norm_args)
if stride_i > 1:
hw = unique_hw.pop()
upsample = utils.maybe_center_crop(upsample, hw)
layers.append(upsample)
# Final layer, no upsampling.
x_logits = tf.layers.Conv2D(
filters=self._n_c,
kernel_size=self._kernel_size,
padding='same',
use_bias=not use_bn,
activation=None,
strides=1,
name='logits')(
upsample)
if use_bn:
x_logits = snt.BatchNorm(scale=True)(x_logits, **batch_norm_args)
layers.append(x_logits)
logging.info('%s upsampling module layer shapes', self._method_str)
logging.info('\n'.join([str(v.shape.as_list()) for v in layers]))
return x_logits