forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfd_eval.py
61 lines (52 loc) · 2.28 KB
/
cfd_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Functions to build evaluation metrics for CFD data."""
import tensorflow.compat.v1 as tf
from meshgraphnets.common import NodeType
def _rollout(model, initial_state, num_steps):
"""Rolls out a model trajectory."""
node_type = initial_state['node_type'][:, 0]
mask = tf.logical_or(tf.equal(node_type, NodeType.NORMAL),
tf.equal(node_type, NodeType.OUTFLOW))
def step_fn(step, velocity, trajectory):
prediction = model({**initial_state,
'velocity': velocity})
# don't update boundary nodes
next_velocity = tf.where(mask, prediction, velocity)
trajectory = trajectory.write(step, velocity)
return step+1, next_velocity, trajectory
_, _, output = tf.while_loop(
cond=lambda step, cur, traj: tf.less(step, num_steps),
body=step_fn,
loop_vars=(0, initial_state['velocity'],
tf.TensorArray(tf.float32, num_steps)),
parallel_iterations=1)
return output.stack()
def evaluate(model, inputs):
"""Performs model rollouts and create stats."""
initial_state = {k: v[0] for k, v in inputs.items()}
num_steps = inputs['cells'].shape[0]
prediction = _rollout(model, initial_state, num_steps)
error = tf.reduce_mean((prediction - inputs['velocity'])**2, axis=-1)
scalars = {'mse_%d_steps' % horizon: tf.reduce_mean(error[1:horizon+1])
for horizon in [1, 10, 20, 50, 100, 200]}
traj_ops = {
'faces': inputs['cells'],
'mesh_pos': inputs['mesh_pos'],
'gt_velocity': inputs['velocity'],
'pred_velocity': prediction
}
return scalars, traj_ops