-
Notifications
You must be signed in to change notification settings - Fork 497
/
Copy pathfilterVisualize.m
135 lines (115 loc) · 4.38 KB
/
filterVisualize.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
function filterVisualize( f, show, arg )
% Used to visualize a 1D/2D/3D filter.
%
% For 1d filters:
% Marks local filter maxima with a green '+' and minima with a red '+'.
% Also shows the fft response of the filter.
%
% For 2d filters:
% Marks local filter maxima with a green '+' and minima with a red '+'.
% Also shows the fft response of the filter. Can optionally also plot a
% scanline through either center row/column.
%
% For 3d filters:
% Dark lobes correspond to negative areas. Surfaces shown are drawn at a
% percentage of the peak filter response detemined by frac.
%
% USAGE
% filterVisualize( f, [show], [arg] )
%
% INPUTS
% f - filter to visualize
% show - [1] figure to use for display (0->uses current)
% arg - different meanding depending on dimension
% d=1: [] not used
% d=2: [''] 'row' OR 'col': display centeral row OR col line
% d=3: [.1] frac of max value of f at which to draw surfaces
%
% OUTPUTS
%
% EXAMPLE
% f=filterBinomial1d( 10, 0 ); filterVisualize( f, 1 ); %1d
% f=filterDog2d( 15, 10, 1 ); filterVisualize( f, 2, 'row' ); %2d
% f=filterDoog([51 51 99],[3 3 5],[1 2 3],0); filterVisualize(f,4,.1); %3d
%
% See also FILTERGAUSS, FBVISUALIZE
%
% Piotr's Computer Vision Matlab Toolbox Version 2.0
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
if( nargin<2 || isempty(show) ); show=1; end;
if( nargin<3 || isempty(arg) ); arg=[]; end;
nd = ndims(f); if(isvector(f)); nd=1; end;
if( show>0); figure( show ); clf; end;
switch nd
case 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r = (length(f)-1)/2;
f( abs(f)<1e-10 ) = 0;
% show original filter
subplot(2,1,1); plot(-r:r, f);
hold('on'); plot(0,0,'m+');
h = line([-r,r],[0,0]); set(h,'color','green')
xlim( [-r, r] );
title(inputname(1));
% plot local mins/maxs in f
locMaxs = find(imregionalmax(f));
locMins = find(imregionalmin(f));
plot( locMaxs-r-1, f(locMaxs), 'g+');
plot( locMins-r-1, f(locMins), 'r+');
hold('off');
% plot fft magnitude of f
subplot(2,1,2);
stem( (-r:r) / (2*r+1), abs( fftshift( fft( f ) )) );
title('Fourier spectra');
case 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
scanline=arg; if( isempty(scanline) ); scanline=''; end
f( abs(f)<1e-10 ) = 0;
% image of filter
subplot(2,1,1); im(f);
title(inputname(1));
hold('on');
% plot maxes and mins in f
locMaxs = imregionalmax(f); locMaxs([1 end],[1 end])=0;
[locMaxs1,locMaxs2] = find(locMaxs);
plot( locMaxs2, locMaxs1, 'g+');
locMins = imregionalmin(f); locMins([1 end],[1 end])=0;
[locMins1,locMins2] = find(locMins);
plot( locMins2, locMins1, 'r+');
% show fft response
subplot(2,1,2);
FF = abs(fftshift(fft2(f)));
im(FF); title('Fourier spectra');
% optionally plot central row/col scanline
if(strcmp(scanline,'row') || strcmp(scanline,'col'))
if( strcmp(scanline,'row') )
sc = f( round((size(f,1)-1)/2+1), : );
else
sc = f( :, round((size(f,2)-1)/2+1) );
end
figure(show+1); plot( sc ); hold('on'); title(scanline);
locMaxs = find(imregionalmax(sc));
locMins = find(imregionalmin(sc));
plot( locMaxs, sc(locMaxs), 'g+');
plot( locMins, sc(locMins), 'r+');
hold('off');
end
case 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
frac=arg; if( isempty(frac) ); frac = .1; end
% better visualization this way, t left to right
f = flipdim( permute( f, [3, 1, 2] ), 1 );
% approximate display as surface (may miss lots of lobes!!!)
maxval = max(abs(f(:)));
washeld = ishold; if(~washeld); hold('on'); end
p = patch(isosurface( f>frac*maxval, 0 ));
set(p,'FaceColor',[.9 .9 .9],'EdgeColor','none'); % light gray lobes
p2 = patch(isosurface( f<-frac*maxval, 0 ));
set(p2,'FaceColor',[.4 .4 .4],'EdgeColor','none'); % dark gray lobes
% set view
daspect([1 1 1]); view(3); axis tight;
camlight; lighting gouraud; set(gca,'Box','on');
set(gca,'YTick',[]); set(gca,'XTick',[]); set(gca,'ZTick',[]);
xlabel('y'); ylabel('t'); zlabel('x');
if(~washeld); hold('off'); end
otherwise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
error('f must be 1 2 or 3 dimensional');
end;