forked from satijalab/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscoring.R
225 lines (224 loc) · 6.79 KB
/
scoring.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#' Calculate module scores for gene expression programs in single cells
#'
#' Calculate the average expression levels of each program (cluster) on single cell level,
#' subtracted by the aggregated expression of control gene sets.
#' All analyzed genes are binned based on averaged expression, and the control genes are
#' randomly selected from each bin.
#'
#' @param object Seurat object
#' @param genes.list Gene expression programs in list
#' @param genes.pool List of genes to check expression levels agains, defaults to rownames(x = object@data)
#' @param n.bin Number of bins of aggregate expression levels for all analyzed genes
#' @param seed.use Random seed for sampling
#' @param ctrl.size Number of control genes selected from the same bin per analyzed gene
#' @param use.k Use gene clusters returned from DoKMeans()
#' @param enrich.name Name for the expression programs
#' @param random.seed Set a random seed
#'
#' @return Returns a Seurat object with module scores added to [email protected]
#'
#' @importFrom Hmisc cut2
#' @importFrom Matrix rowMeans colMeans
#'
#' @references Tirosh et al, Science (2016)
#'
#' @export
#'
#' @examples
#' cd_genes <- list(c(
#' 'CD79B',
#' 'CD79A',
#' 'CD19',
#' 'CD180',
#' 'CD200',
#' 'CD3D',
#' 'CD2',
#' 'CD3E',
#' 'CD7',
#' 'CD8A',
#' 'CD14',
#' 'CD1C',
#' 'CD68',
#' 'CD9',
#' 'CD247'
#' ))
#' pbmc_small <- AddModuleScore(
#' object = pbmc_small,
#' genes.list = cd_genes,
#' ctrl.size = 5,
#' enrich.name = 'CD_Genes'
#' )
#' head(x = [email protected])
#'
AddModuleScore <- function(
object,
genes.list = NULL,
genes.pool = NULL,
n.bin = 25,
seed.use = 1,
ctrl.size = 100,
use.k = FALSE,
enrich.name = "Cluster",
random.seed = 1
) {
set.seed(seed = random.seed)
genes.old <- genes.list
if (use.k) {
genes.list <- list()
for (i in as.numeric(x = names(x = table([email protected][[1]]$cluster)))) {
genes.list[[i]] <- names(x = which(x = [email protected][[1]]$cluster == i))
}
cluster.length <- length(x = genes.list)
} else {
if (is.null(x = genes.list)) {
stop("Missing input gene list")
}
genes.list <- lapply(
X = genes.list,
FUN = function(x) {
return(intersect(x = x, y = rownames(x = object@data)))
}
)
cluster.length <- length(x = genes.list)
}
if (!all(LengthCheck(values = genes.list))) {
warning(paste(
'Could not find enough genes in the object from the following gene lists:',
paste(names(x = which(x = ! LengthCheck(values = genes.list)))),
'Attempting to match case...'
))
genes.list <- lapply(
X = genes.old,
FUN = CaseMatch, match = rownames(x = object@data)
)
}
if (!all(LengthCheck(values = genes.list))) {
stop(paste(
'The following gene lists do not have enough genes present in the object:',
paste(names(x = which(x = ! LengthCheck(values = genes.list)))),
'exiting...'
))
}
if (is.null(x = genes.pool)) {
genes.pool = rownames(x = object@data)
}
data.avg <- Matrix::rowMeans(x = object@data[genes.pool, ])
data.avg <- data.avg[order(data.avg)]
data.cut <- as.numeric(x = Hmisc::cut2(
x = data.avg,
m = round(x = length(x = data.avg) / n.bin)
))
names(x = data.cut) <- names(x = data.avg)
ctrl.use <- vector(mode = "list", length = cluster.length)
for (i in 1:cluster.length) {
genes.use <- genes.list[[i]]
for (j in 1:length(x = genes.use)) {
ctrl.use[[i]] <- c(
ctrl.use[[i]],
names(x = sample(
x = data.cut[which(x = data.cut == data.cut[genes.use[j]])],
size = ctrl.size,
replace = FALSE
))
)
}
}
ctrl.use <- lapply(X = ctrl.use, FUN = unique)
ctrl.scores <- matrix(
data = numeric(length = 1L),
nrow = length(x = ctrl.use),
ncol = ncol(x = object@data)
)
for (i in 1:length(ctrl.use)) {
genes.use <- ctrl.use[[i]]
ctrl.scores[i, ] <- Matrix::colMeans(x = object@data[genes.use, ])
}
genes.scores <- matrix(
data = numeric(length = 1L),
nrow = cluster.length,
ncol = ncol(x = object@data)
)
for (i in 1:cluster.length) {
genes.use <- genes.list[[i]]
data.use <- object@data[genes.use, , drop = FALSE]
genes.scores[i, ] <- Matrix::colMeans(x = data.use)
}
genes.scores.use <- genes.scores - ctrl.scores
rownames(x = genes.scores.use) <- paste0(enrich.name, 1:cluster.length)
genes.scores.use <- as.data.frame(x = t(x = genes.scores.use))
rownames(x = genes.scores.use) <- colnames(x = object@data)
object <- AddMetaData(
object = object,
metadata = genes.scores.use,
col.name = colnames(x = genes.scores.use)
)
gc(verbose = FALSE)
return(object)
}
#' Score cell cycle phases
#'
#' @param object A Seurat object
#' @param g2m.genes A vector of genes associated with G2M phase
#' @param s.genes A vector of genes associated with S phases
#' @param set.ident If true, sets identity to phase assignments
#' Stashes old identities in 'old.ident'
#'
#' @return A Seurat object with the following columns added to [email protected]: S.Score, G2M.Score, and Phase
#'
#' @seealso \code{AddModuleScore}
#'
#' @export
#'
#' @examples
#' \dontrun{
#' # pbmc_small doesn't have any cell-cycle genes
#' # To run CellCycleScoring, please use a dataset with cell-cycle genes
#' # An example is available at http://satijalab.org/seurat/cell_cycle_vignette.html
#' pbmc_small <- CellCycleScoring(
#' object = pbmc_small,
#' g2m.genes = cc.genes$g2m.genes,
#' s.genes = cc.genes$s.genes
#' )
#' head(x = [email protected])
#' }
#'
CellCycleScoring <- function(
object,
g2m.genes,
s.genes,
set.ident = FALSE
) {
enrich.name <- 'Cell Cycle'
genes.list <- list('S.Score' = s.genes, 'G2M.Score' = g2m.genes)
object.cc <- AddModuleScore(
object = object,
genes.list = genes.list,
enrich.name = enrich.name,
ctrl.size = min(vapply(X = genes.list, FUN = length, FUN.VALUE = numeric(1)))
)
cc.columns <- grep(pattern = enrich.name, x = colnames(x = [email protected]))
cc.scores <- [email protected][, cc.columns]
rm(object.cc)
gc(verbose = FALSE)
assignments <- apply(
X = cc.scores,
MARGIN = 1,
FUN = function(scores, first = 'S', second = 'G2M', null = 'G1') {
if (all(scores < 0)) {
return(null)
} else {
return(c(first, second)[which(x = scores == max(scores))])
}
}
)
cc.scores <- merge(x = cc.scores, y = data.frame(assignments), by = 0)
colnames(x = cc.scores) <- c('rownames', 'S.Score', 'G2M.Score', 'Phase')
rownames(x = cc.scores) <- cc.scores$rownames
cc.scores <- cc.scores[, c('S.Score', 'G2M.Score', 'Phase')]
object <- AddMetaData(object = object, metadata = cc.scores)
if (set.ident) {
object <- StashIdent(object = object, save.name = 'old.ident')
object <- SetAllIdent(object = object, id = 'Phase')
}
return(object)
}