Prometheus exporter for custom eBPF metrics.
Motivation of this exporter is to allow you to write eBPF code and export metrics that are not otherwise accessible from the Linux kernel.
eBPF was described by Ingo Molnár as:
One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively.
An easy way of thinking about this exporter is bcc tools as prometheus metrics:
- https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
- http://www.brendangregg.com/ebpf.html
To build, you need to have libbcc
installed:
$ mkdir /tmp/ebpf_exporter
$ cd /tmp/ebpf_exporter
$ GOPATH=$(pwd) go get -v github.com/cloudflare/ebpf_exporter/...
To run with bio
config (you need root
privileges):
$ ./bin/ebpf_exporter --config.file=src/github.com/cloudflare/ebpf_exporter/examples/bio.yaml
If you pass --debug
, you can see raw tables at /tables
endpoint.
Currently the only supported way of getting data out of the kernel is via maps (we call them tables in configuration). See:
See examples section for real world examples.
If you have examples you want to share, please feel free to open a PR.
Skip to format to see the full specification.
You can find additional examples in examples directory.
Unless otherwise specified, all examples are expected to work on Linux 4.14, which is the latest LTS release at the time of writing.
In general, exported to work from Linux 4.1. See BCC docs for more details:
This program attaches to kernel functions responsible for managing page cache and counts pages going through them.
This is an adapted version of cachestat
from bcc tools:
Resulting metrics:
# HELP ebpf_exporter_page_cache_ops Page cache operation counters by type
# TYPE ebpf_exporter_page_cache_ops counter
ebpf_exporter_page_cache_ops{command="syslog-ng",op="account_page_dirtied"} 1531
ebpf_exporter_page_cache_ops{command="syslog-ng",op="add_to_page_cache_lru"} 1092
ebpf_exporter_page_cache_ops{command="syslog-ng",op="mark_buffer_dirty"} 31205
ebpf_exporter_page_cache_ops{command="syslog-ng",op="mark_page_accessed"} 54846
ebpf_exporter_page_cache_ops{command="systemd-journal",op="account_page_dirtied"} 104681
ebpf_exporter_page_cache_ops{command="systemd-journal",op="add_to_page_cache_lru"} 7330
ebpf_exporter_page_cache_ops{command="systemd-journal",op="mark_buffer_dirty"} 125486
ebpf_exporter_page_cache_ops{command="systemd-journal",op="mark_page_accessed"} 898214
You can check out cachestat
source code to see how these translate:
programs:
- name: cachestat
metrics:
counters:
- name: page_cache_ops_total
help: Page cache operation counters by type
table: counts
labels:
- name: op
decoders:
- name: ksym
- name: command
decoders:
- name: string
- name: regexp
regexps:
- ^systemd-journal$
- ^syslog-ng$
kprobes:
add_to_page_cache_lru: do_count
mark_page_accessed: do_count
account_page_dirtied: do_count
mark_buffer_dirty: do_count
code: |
#include <uapi/linux/ptrace.h>
struct key_t {
u64 ip;
char command[128];
};
BPF_HASH(counts, struct key_t);
int do_count(struct pt_regs *ctx) {
struct key_t key = { .ip = PT_REGS_IP(ctx) };
bpf_get_current_comm(&key.command, sizeof(key.command));
u64 zero = 0, *val;
val = counts.lookup_or_init(&key, &zero);
(*val)++;
return 0;
}
This program attaches to block io subsystem and reports metrics on disk latency and request sizes for separate disks.
The following tools are working with similar concepts:
- https://github.com/iovisor/bcc/blob/master/tools/biosnoop_example.txt
- https://github.com/iovisor/bcc/blob/master/tools/biolatency_example.txt
- https://github.com/iovisor/bcc/blob/master/tools/bitesize_example.txt
This program was the initial reason for the exporter and was heavily influenced by the experimental exporter from Daniel Swarbrick:
Resulting metrics:
# HELP ebpf_exporter_bio_latency Block IO latency histogram with microsecond buckets
# TYPE ebpf_exporter_bio_latency histogram
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="1"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="2"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="4"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="8"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="16"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="32"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="64"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="128"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="256"} 135
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="512"} 203
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="1024"} 264
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="2048"} 318
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="4096"} 366
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="8192"} 381
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="16384"} 392
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="32768"} 397
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="65536"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="131072"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="262144"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="524288"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="1.048576e+06"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="2.097152e+06"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="4.194304e+06"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="8.388608e+06"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="1.6777216e+07"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="3.3554432e+07"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="6.7108864e+07"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="1.34217728e+08"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="2.68435456e+08"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="5.36870912e+08"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="1.073741824e+09"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="2.147483648e+09"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="read",le="+Inf"} 398
ebpf_exporter_bio_latency_sum{device="sda",operation="read"} 0
ebpf_exporter_bio_latency_count{device="sda",operation="read"} 398
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="1"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="2"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="4"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="8"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="16"} 0
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="32"} 6
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="64"} 43
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="128"} 108
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="256"} 150
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="512"} 207
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="1024"} 225
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="2048"} 292
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="4096"} 489
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="8192"} 685
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="16384"} 837
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="32768"} 951
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="65536"} 1001
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="131072"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="262144"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="524288"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="1.048576e+06"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="2.097152e+06"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="4.194304e+06"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="8.388608e+06"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="1.6777216e+07"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="3.3554432e+07"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="6.7108864e+07"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="1.34217728e+08"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="2.68435456e+08"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="5.36870912e+08"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="1.073741824e+09"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="2.147483648e+09"} 1014
ebpf_exporter_bio_latency_bucket{device="sda",operation="write",le="+Inf"} 1014
ebpf_exporter_bio_latency_sum{device="sda",operation="write"} 0
ebpf_exporter_bio_latency_count{device="sda",operation="write"} 1014
...
# HELP ebpf_exporter_bio_size Block IO size histogram with kibibyte buckets
# TYPE ebpf_exporter_bio_size histogram
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="1"} 0
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="2"} 0
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="4"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="8"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="16"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="32"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="64"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="128"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="256"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="512"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="1024"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="2048"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="4096"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="8192"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="16384"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="32768"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="read",le="+Inf"} 398
ebpf_exporter_bio_size_sum{device="sda",operation="read"} 0
ebpf_exporter_bio_size_count{device="sda",operation="read"} 398
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="1"} 25
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="2"} 74
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="4"} 227
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="8"} 284
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="16"} 321
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="32"} 338
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="64"} 342
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="128"} 354
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="256"} 395
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="512"} 609
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="1024"} 1014
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="2048"} 1014
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="4096"} 1014
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="8192"} 1014
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="16384"} 1014
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="32768"} 1014
ebpf_exporter_bio_size_bucket{device="sda",operation="write",le="+Inf"} 1014
ebpf_exporter_bio_size_sum{device="sda",operation="write"} 0
ebpf_exporter_bio_size_count{device="sda",operation="write"} 1014
...
To nicely plot these in Grafana, you'll need v5.1:
programs:
- name: bio
metrics:
histograms:
- name: bio_latency
help: Block IO latency histogram with microsecond buckets
table: io_latency
bucket_type: exp2
bucket_min: 0
bucket_max: 31
labels:
- name: device
decoders:
- name: string
- name: operation
decoders:
- name: static_map
static_map:
0x1: read
0x2: write
- name: bucket
decoders:
- name: uint64
- name: bio_size
help: Block IO size histogram with kibibyte buckets
table: io_size
bucket_type: exp2
bucket_min: 0
bucket_max: 15
labels:
- name: device
decoders:
- name: string
- name: operation
decoders:
- name: static_map
static_map:
0x1: read
0x2: write
- name: bucket
decoders:
- name: uint64
kprobes:
blk_start_request: trace_req_start
blk_mq_start_request: trace_req_start
blk_account_io_completion: trace_req_completion
code: |
#include <uapi/linux/ptrace.h>
#include <linux/blkdev.h>
#include <linux/blk_types.h>
typedef struct disk_key {
char disk[DISK_NAME_LEN];
u8 op;
u64 slot;
} disk_key_t;
// Max number of disks we expect to see on the host
const u8 max_disks = 6;
// Hash to temporily hold the start time of each bio request, max 10k in-flight by default
BPF_HASH(start, struct request *);
// Histograms to record latencies, 32 buckets per disk in us (up to 2s)
BPF_HISTOGRAM(io_latency, disk_key_t, 32 * max_disks);
// Histograms to record sizes, 16 buckets per disk in kib (up to 32mib)
BPF_HISTOGRAM(io_size, disk_key_t, 16 * max_disks);
// Record start time of a request
int trace_req_start(struct pt_regs *ctx, struct request *req)
{
u64 ts = bpf_ktime_get_ns();
start.update(&req, &ts);
return 0;
}
// Calculate request duration and store in appropriate histogram bucket
int trace_req_completion(struct pt_regs *ctx, struct request *req, unsigned int bytes)
{
u64 *tsp, delta;
// Fetch timestamp and calculate delta
tsp = start.lookup(&req);
if (tsp == 0) {
return 0; // missed issue
}
delta = bpf_ktime_get_ns() - *tsp;
// Convert to microseconds
delta /= 1000;
// Latency histogram key
u64 latency_slot = bpf_log2l(delta);
// Cap latency bucket at 31
if (latency_slot > 31) {
latency_slot = 31;
}
disk_key_t latency_key = { .slot = latency_slot };
bpf_probe_read(&latency_key.disk, sizeof(latency_key.disk), req->rq_disk->disk_name);
// Request size histogram key
u64 size_slot = bpf_log2(bytes / 1024);
// Cap latency bucket at 15
if (size_slot > 15) {
size_slot = 15;
}
disk_key_t size_key = { .slot = size_slot };
bpf_probe_read(&size_key.disk, sizeof(size_key.disk), req->rq_disk->disk_name);
if ((req->cmd_flags & REQ_OP_MASK) == REQ_OP_WRITE) {
latency_key.op = 2;
size_key.op = 2;
} else {
latency_key.op = 1;
size_key.op = 1;
}
io_latency.increment(latency_key);
io_size.increment(size_key);
start.delete(&req);
return 0;
}
Programs combine a piece of eBPF code running in the kernel with configuration describing how to export collected data as prometheus metrics. There may be multiple programs running from one exporter instance.
Metrics define what values we get from eBPF program running in the kernel.
Counters from maps are straightforward: you pull data out of kernel, transform map keys into sets of labels and export them as prometheus counters.
Histograms from maps are a bit more complex than counters. Maps in the kernel cannot be nested, so we need to pack keys in the kerne and unpack in user space.
We get from this:
sda, read, 1ms -> 10 ops
sda, read, 2ms -> 25 ops
sda, read, 4ms -> 51 ops
To this:
sda, read -> [1ms -> 10 ops, 2ms -> 25 ops, 4ms -> 51 ops]
Prometheus histograms expect to have all buckets when we report a metric, but the kernel creates keys as events occur, which means we need to backfill the missing data.
That's why for histogram configuration we have the following keys:
bucket_type
: can be eitherexp2
orlinear
bucket_min
: minimum bucket keybucket_max
: maximum bucket keybucket_multiplier
: multiplier for linear histograms
For exp2
histograms we expect kernel to provide a map with linear keys that
are log2 of actual values. We then go from bucket_min
to bucket_max
in
user space and remap keys by exponentiating them:
count = 0
for i = bucket_min; i < bucket_max; i++ {
count += map.get(i, 0)
result[exp2(i)] = count
}
Here map
is the map from the kernel and result
is what goes to prometheus.
We take cumulative count
, because this is what prometheus expects.
For linear
histograms we expect kernel to provide a map with linear keys
that are results of integer division of original value by bucket_multiplier
.
To reconstruct the histogram in user space we do the following:
count = 0
for i = bucket_min; i < bucket_max; i++ {
count += map.get(i, 0)
result[i * bucket_multiplier] = count
}
The default value of bucket_multiplier
is 1
.
For both exp2
and linear
histograms it is important that kernel does
not count events into buckets outside of [bucket_min, bucket_max]
range.
If you encounter a value above your range, truncate it to be in it. You're
losing +Inf
bucket, but usually it's not that big of a deal.
Each kernel map key must count values under that key's value to match
the behavior of prometheus. For example, exp2
histogram key 3
should
count values for (exp2(2), exp2(3)]
interval: (4, 8]
. To put it simply:
use bpf_log2l
or integer division and you'll be good.
The side effect of implementing histograms this way is that some granularity
is lost due to either taking log2
or division. We explicitly set _sum
key
of prometheus histogram to zero to avoid confusion around this.
Labels transform kernel map keys into prometheus labels.
Maps coming from the kernel are encoded in a special way. For example,
here's how [sda, 1]
is encoded as a string:
{ "sda" 0x1 }
We're transforming this to ["sda", "0x1"]
and call it a set of labels.
Each label can be transformed with decoders (see below) according to metric configuration. Generally number of labels matches number of elements in the kernel map key.
Decoders take a string input of a label value and transform it to a string output that can either be chained to another decoder or used as the final label value.
Below are decoders we have built in.
KSym decoder takes kernel address and converts that to the function name.
In your eBPF program you can use PT_REGS_IP(ctx)
to get the address
of the kprobe you attached to as a u64
variable.
Regexp decoder takes list of strings from regexp
configuration key
of the decoder and ties to use each as a pattern in golang.org/pkg/regexp
:
If decoder input matches any of the patterns, it is permitted. Otherwise, the whole metric label set is dropped.
An example to report metrics only for systemd-journal
and syslog-ng
:
- name: command
decoders:
- name: string
- name: regexp
regexps:
- ^systemd-journal$
- ^syslog-ng$
Static map decoder takes input and maps it to another value via static_map
configuration key of the decoder.
An example to match 0x1
to read
and 0x2
to write
:
- name: operation
decoder: static_map
static_decoder_map:
0x1: read
0x2: write
String decoder transforms quoted strings coming from the kernel into unquoted
string usable for prometheus metrics. For example: "sda" -> sda
.
UInt64 decoder transforms hex encoded uint64
values from the kernel
into regular numbers. For example: 0xe -> 14
.
Configuration file is defined like this:
# List of eBPF programs to run
- programs:
[ - <program> ]
See Programs section for more details.
# Program name
name: <program name>
# Metrics attached to the program
[ metrics: metrics ]
# Kprobes (kernel functions) and their targets (eBPF functions)
krpobes:
[ krpobename: target ... ]
# Actual eBPF program code to inject in the kernel
code: [ code ]
See Metrics section for more details.
counters:
[ - counter ]
histograms:
[ - histogram ]
See Counters section for more details.
name: <prometheus counter name>
help: <prometheus metric help>
table: <eBPF table name to track>
labels:
[ - label ]
See Histograms section for more details.
name: <prometheus histogram name>
help: <prometheus metric help>
table: <eBPF table name to track>
bucket_type: <table bucket type: exp2 or linear>
bucket_multiplier: <table bucket multiplier: float64>
bucket_min: <min bucket value: int>
bucket_max: <max bucket value: int>
labels:
[ - label ]
See Labels section for more details.
name: <prometheus label name>
decoders:
[ - decoder ]
See Decoders section for more details.
name: <decoder name>
# ... decoder specific configuration
MIT