-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest_processing.py
80 lines (62 loc) · 2.41 KB
/
test_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import sys
import os
from pathlib import Path
import pandas as pd
import pytest
# pytest를 적절히 임포트하기 위해 필요합니다.
myPath = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, myPath + "/../")
from ml_editor.data_ingestion import parse_xml_to_csv
from ml_editor.data_processing import (
get_random_train_test_split,
get_split_by_author,
add_text_features_to_df,
format_raw_df,
)
REQUIRED_FEATURES = [
"is_question",
"action_verb_full",
"language_question",
"question_mark_full",
"text_len",
]
CURR_PATH = Path(os.path.dirname(__file__))
XML_PATH = Path("fixtures/MiniPosts.xml")
CSV_PATH = Path("fixtures/MiniPosts.csv")
# csv 파일을 확인합니다.
@pytest.fixture(scope="session", autouse=True)
def get_csv():
parse_xml_to_csv(CURR_PATH / XML_PATH, save_path=CURR_PATH / CSV_PATH)
@pytest.fixture
def df_with_features():
df = pd.read_csv(CURR_PATH / CSV_PATH)
df = format_raw_df(df.copy())
return add_text_features_to_df(df.copy())
def test_random_split_proportion():
df = pd.read_csv(CURR_PATH / CSV_PATH)
train, test = get_random_train_test_split(df, test_size=0.3)
print(len(train), len(test))
assert float(len(train) / 0.7) == float(len(test) / 0.3)
def test_author_split_no_leakage():
df = pd.read_csv(CURR_PATH / CSV_PATH)
train, test = get_split_by_author(df, test_size=0.3)
train_owners = set(train["OwnerUserId"].values)
test_owners = set(test["OwnerUserId"].values)
assert len(train_owners.intersection(test_owners)) == 0
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
def test_feature_presence(df_with_features):
for feat in REQUIRED_FEATURES:
assert feat in df_with_features.columns
def test_feature_type(df_with_features):
assert df_with_features["is_question"].dtype == bool
assert df_with_features["action_verb_full"].dtype == bool
assert df_with_features["language_question"].dtype == bool
assert df_with_features["question_mark_full"].dtype == bool
assert df_with_features["text_len"].dtype == int
def test_text_length(df_with_features):
text_mean = df_with_features["text_len"].mean()
text_max = df_with_features["text_len"].max()
text_min = df_with_features["text_len"].min()
assert text_mean in pd.Interval(left=200, right=1000)
assert text_max in pd.Interval(left=0, right=10000)
assert text_min in pd.Interval(left=0, right=1000)