forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelu_op_miopen.hip
143 lines (129 loc) · 3.96 KB
/
elu_op_miopen.hip
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include "caffe2/operators/elu_op.h"
#include "caffe2/operators/hip/activation_ops_miopen.h"
namespace caffe2 {
template <>
class MIOPENActivationOp<miopenActivationELU> final
: public MIOPENActivationOpBase {
public:
USE_OPERATOR_FUNCTIONS(HIPContext);
MIOPENActivationOp(const OperatorDef& operator_def, Workspace* ws)
: MIOPENActivationOpBase(operator_def, ws),
OP_SINGLE_ARG(float, "alpha", alpha_, 1.0f) {
MIOPEN_ENFORCE(miopenSetActivationDescriptor(
act_desc_,
miopenActivationELU,
static_cast<double>(alpha_),
0.0,
1.0));
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
const auto& X = Input(0);
auto* Y = Output(0);
Y->ResizeLike(X);
if (X.size() == 0) {
Y->template mutable_data<T>();
return true;
}
if (X.sizes() != mio_dims_) {
VLOG(1) << "Setting descriptors.";
mio_dims_ = X.sizes().vec();
int C = 1, H = 1, W = 1;
if (X.ndim() == 4) {
// Normal 4-dimensional tensors for images.
C = X.dim32(1);
H = X.dim32(2);
W = X.dim32(3);
} else {
// If X is not 4-dimensional, we will simply use H = 1 and W = 1
// and wrap everything into C.
C = X.size() / X.dim32(0);
}
MIOPEN_ENFORCE(miopenSet4dTensorDescriptor(
data_desc_, miopenTypeWrapper<T>::type, X.dim32(0), C, H, W));
}
MIOPEN_ENFORCE(miopenActivationForward(
this->miopen_wrapper_.inline_miopen_handle(),
this->act_desc_,
miopenTypeWrapper<T>::kOne(),
this->data_desc_,
X.template data<T>(),
miopenTypeWrapper<T>::kZero(),
this->data_desc_,
Y->template mutable_data<T>()));
return true;
}
private:
const float alpha_;
};
template <>
class MIOPENActivationGradientOp<miopenActivationELU> final
: public MIOPENActivationOpBase {
public:
USE_OPERATOR_FUNCTIONS(HIPContext);
MIOPENActivationGradientOp(const OperatorDef& operator_def, Workspace* ws)
: MIOPENActivationOpBase(operator_def, ws),
OP_SINGLE_ARG(float, "alpha", alpha_, 1.0f) {
MIOPEN_ENFORCE(miopenSetActivationDescriptor(
act_desc_,
miopenActivationELU,
static_cast<double>(alpha_),
0.0,
1.0));
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
const auto& Y = Input(0);
const auto& dY = Input(1);
auto* dX = Output(0);
dX->ResizeLike(Y);
if (Y.size() == 0) {
dX->template mutable_data<T>();
return true;
}
if (Y.sizes() != mio_dims_) {
VLOG(1) << "Setting descriptors.";
mio_dims_ = Y.sizes().vec();
int C = 1, H = 1, W = 1;
if (Y.ndim() == 4) {
// Normal 4-dimensional tensors for images.
C = Y.dim32(1);
H = Y.dim32(2);
W = Y.dim32(3);
} else {
// If Y is not 4-dimensional, we will simply use H = 1 and W = 1
// and wrap everything into C.
C = Y.size() / Y.dim32(0);
}
MIOPEN_ENFORCE(miopenSet4dTensorDescriptor(
data_desc_, miopenTypeWrapper<T>::type, Y.dim32(0), C, H, W));
}
MIOPEN_ENFORCE(miopenActivationBackward(
this->miopen_wrapper_.inline_miopen_handle(),
this->act_desc_,
miopenTypeWrapper<T>::kOne(),
this->data_desc_,
Y.template data<T>(),
this->data_desc_,
dY.template data<T>(),
this->data_desc_,
Y.template data<T>(),
miopenTypeWrapper<T>::kZero(),
this->data_desc_,
dX->template mutable_data<T>()));
return true;
}
private:
const float alpha_;
};
REGISTER_MIOPEN_OPERATOR(Elu, MIOPENActivationOp<miopenActivationELU>);
REGISTER_MIOPEN_OPERATOR(
EluGradient,
MIOPENActivationGradientOp<miopenActivationELU>);
} // namespace caffe2