forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathint8_dequantize_op.h
54 lines (41 loc) · 1.16 KB
/
int8_dequantize_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#ifndef CAFFE2_OPERATORS_INT8_DEQUANTIZE_OP_H_
#define CAFFE2_OPERATORS_INT8_DEQUANTIZE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/operators/quantized/int8_utils.h"
#include <c10/util/irange.h>
namespace caffe2 {
namespace int8 {
namespace {
void Int8Dequantize(
const uint8_t* in,
float* out,
const int64_t N,
const float X_scale,
const int32_t X_offset) {
for (const auto i : c10::irange(N)) {
out[i] = (static_cast<int32_t>(in[i]) - X_offset) * X_scale;
}
}
} // namespace
class Int8DequantizeOp final : public Operator<CPUContext> {
public:
using Operator<CPUContext>::Operator;
bool RunOnDevice() override {
const auto& X = Inputs()[0]->template Get<Int8TensorCPU>();
auto* Y = Output(0, X.t.sizes(), at::dtype<float>());
int32_t X_offset = X.zero_point;
auto X_scale = X.scale;
Int8Dequantize(
X.t.data<uint8_t>(),
Y->mutable_data<float>(),
X.t.numel(),
X_scale,
X_offset);
return true;
}
};
} // namespace int8
} // namespace caffe2
#endif // CAFFE2_OPERATORS_INT8_DEQUANTIZE_OP_H_