forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimpl.py
988 lines (829 loc) · 39.1 KB
/
impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
import dataclasses
import functools
import inspect
import sys
import typing
import weakref
from torchgen.model import FunctionSchema, OperatorName, SchemaKind, BaseType, ListType, BaseTy
import torch
import torch._C as _C
import torch.library as library
from torch._library.abstract_impl import AbstractImplCtx
from torch.library import get_ctx
from .autograd import autograd_kernel_indirection, construct_autograd_kernel
"""
For a detailed guide on custom ops, please see
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
This file includes pieces of the implementation of our custom operator API.
"""
__all__ = ["custom_op", "CustomOp", "get_ctx", "AbstractImplCtx"]
SUPPORTED_DEVICE_TYPE_TO_KEY = {
"cpu": "CPU",
"cuda": "CUDA",
}
# We will not let users register CustomOps with anything that could look like
# PyTorch internals to avoid confusion.
RESERVED_NS = {
"prim",
"prims",
"aten",
"at",
"torch",
"pytorch",
}
def custom_op(
qualname: str, manual_schema: typing.Optional[str] = None
) -> typing.Callable:
r"""Creates a new CustomOp object.
WARNING: if you're a user, please do not use this directly
(instead use the torch._custom_ops APIs).
Also please see the following for a detailed guide on custom ops.
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
In PyTorch, defining an op (short for "operator") is a two step-process:
- we need to define (create) the op
- we need to implement behavior for how the operator interacts with
various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
This entrypoint defines the CustomOp object (the first step);
you must then perform the second step by calling various methods on
the CustomOp object.
This API is used as a decorator (see examples).
Arguments:
qualname (str): Should be a string that looks like
"namespace::operator_name". Operators in PyTorch need a namespace to
avoid name collisions; a given operator may only be created once.
If you are writing a Python library, we recommend the namespace to
be the name of your top-level module. The operator_name must be
the same as the name of the function you pass to custom_op
(see examples).
manual_schema (Optional[str]): Each PyTorch operator needs a schema that
tells PyTorch the types of the inputs/outputs. If None (default),
we will infer the schema from the type annotations on the function
(see examples). Otherwise, if you don't want to use type annotations,
you may provide us the schema string.
Example::
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Step 1: define the CustomOp.
>>> # We need to provide the decorator a "prototype function"
>>> # (a function with Python ellipses as the body).
>>> @custom_op("mylibrary::numpy_sin")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> ...
>>>
>>> # numpy_sin is now an instance of class CustomOp
>>> print(type(numpy_sin))
>>>
>>> # Step 2: Register an implementation for various PyTorch subsystems
>>>
>>> # Register an implementation for CPU tensors
>>> @numpy_sin.impl('cpu'):
>>> def numpy_sin_impl_cpu(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Register an implementation for CUDA tensors
>>> @numpy_sin.impl('cuda'):
>>> def numpy_sin_impl_cuda(x):
>>> return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device)
>>>
>>> x = torch.randn(3)
>>> numpy_sin(x) # calls numpy_sin_impl_cpu
>>>
>>> x_cuda = x.cuda()
>>> numpy_sin(x) # calls numpy_sin_impl_cuda
"""
def inner(func):
if not inspect.isfunction(func):
raise ValueError(
f"custom_op(...)(func): Expected `func` to be a Python "
f"function, got: {type(func)}"
)
ns, name = parse_qualname(qualname)
validate_namespace(ns)
if func.__name__ != name:
raise ValueError(
f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
f"to have name '{name}' but got '{func.__name__}'. "
f"Please either change the name of `func` or the qualname that "
f"is passed to `custom_op`"
)
schema = infer_schema(func) if manual_schema is None else manual_schema
schema_str = f"{name}{schema}"
function_schema = FunctionSchema.parse(schema_str)
validate_schema(function_schema)
if manual_schema is not None:
validate_function_matches_schema(function_schema, func)
lib = library.Library(ns, "FRAGMENT")
lib.define(schema_str)
ophandle = find_ophandle_or_throw(ns, function_schema.name)
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True)
result.__name__ = func.__name__
result.__module__ = func.__module__
result.__doc__ = func.__doc__
library.impl(lib, result._opname, "Autograd")(
autograd_kernel_indirection(weakref.proxy(result))
)
torch._C._dispatch_set_report_error_callback(
ophandle, functools.partial(report_error_callback, weakref.proxy(result))
)
return result
return inner
# Global dictionary holding references to all CustomOp objects
# Yes, it keeps all CustomOps alive (see NOTE [CustomOp lifetime])
# Used to query the CustomOp associated with a specific C++ dispatcher operator.
# An example usage is FakeTensor: FakeTensor checks if a specific operator
# has an implementation registered via the CustomOp API.
# Indexed by qualname (e.g. aten::foo)
global_registry: typing.Dict[str, "CustomOp"] = {}
class CustomOp:
r"""Class for custom operators in PyTorch.
Use the CustomOp API to create user-defined custom operators that behave
just like regular PyTorch operators (e.g. torch.sin, torch.mm) when it
comes to various PyTorch subsystems (like torch.compile).
To construct a `CustomOp`, use `custom_op`.
"""
def __init__(self, lib, cpp_ns, schema, operator_name, ophandle, *, _private_access=False):
super().__init__()
if not _private_access:
raise RuntimeError(
"The CustomOp constructor is private and we do not guarantee "
"BC for it. Please use custom_op(...) to create a CustomOp object"
)
name = f"{cpp_ns}::{operator_name}"
self._schema = schema
self._cpp_ns = cpp_ns
self._lib: library.Library = lib
self._ophandle: _C._DispatchOperatorHandle = ophandle
# Has the name of the op, e.g. "foo". We cache here for convenience.
self._opname: str = operator_name
# this is _opname but with namespace. e.g. "custom::foo"
self._qualname: str = name
self.__name__ = None # mypy requires this
# NB: Some of these impls are registered as kernels to DispatchKeys.
# Modifying the _impls dict directly won't do anything in that case.
self._impls: typing.Dict[str, typing.Optional[FuncAndLocation]] = {}
# See NOTE [CustomOp autograd kernel indirection]
self._registered_autograd_kernel_indirection = False
global_registry[self._qualname] = self
def _register_autograd_kernel_indirection(self):
assert not self._registered_autograd_kernel_indirection
self._lib.impl(self._opname, autograd_kernel_indirection(weakref.proxy(self)), "Autograd")
self._registered_autograd_kernel_indirection = True
# Records the impl and the source location in self._impls
# Note that this doesn't cause torch.library to use the impl, that
# needs to be done in a separate self._lib.impl call.
def _register_impl(self, kind, func, stacklevel=2):
if self._has_impl(kind):
func_and_location = self._impls[kind]
assert func_and_location is not None # Pacify mypy
location = func_and_location.location
raise RuntimeError(
f"Attempting to register a {kind} impl for operator {self._qualname} "
f"that already has a {kind} impl registered from Python at "
f"{location}. This is not supported."
)
frame = inspect.getframeinfo(sys._getframe(stacklevel))
location = f"{frame.filename}:{frame.lineno}"
self._impls[kind] = FuncAndLocation(func, location)
def _get_impl(self, kind):
return self._impls[kind]
def _has_impl(self, kind):
return kind in self._impls
def _destroy(self):
# NOTE: [CustomOp lifetime]
# A CustomOp, once created, lives forever. The mechanism is that the
# global registry holds a reference to it. However, to make testing
# easier, we want to be able to destroy CustomOp objects.
# CustomOp._destroy does the job, though it leaves the CustomOp
# in a garbage state.
del self._lib
opnamespace = getattr(torch.ops, self._cpp_ns)
if hasattr(opnamespace, self._opname):
delattr(opnamespace, self._opname)
del global_registry[self._qualname]
def __repr__(self):
return f'<CustomOp(op="{self._qualname}")>'
def __call__(self, *args, **kwargs):
# Bypass torch.ops.* and directly do OperatorHandle::callBoxed.
# Using torch.ops.* is a bit of a pain (it can be slow and it has lifetime
# issues from caching operators that make testing CustomOp difficult).
result = _C._dispatch_call_boxed(self._ophandle, *args, **kwargs)
return result
def impl(
self, device_types: typing.Union[str, typing.Iterable[str]], _stacklevel=2,
) -> typing.Callable:
r"""Register an implementation for a device type for this CustomOp object.
WARNING: if you're a user, please do not use this directly
(instead use the torch._custom_ops APIs).
Also please see the following for a detailed guide on custom ops.
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
If the CustomOp is passed multiple Tensor inputs with different device
types, it will dispatch to the registered implementation for the highest
priority device type among those present.
The supported device types, in order of priority, are {'cuda', 'cpu'}.
This API is used as a decorator (see examples).
Arguments:
device_types (str or Iterable[str]): the device type(s) to register the function for.
Examples::
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> @custom_op("mylibrary::numpy_sin")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> ...
>>>
>>> # Register an implementation for CPU Tensors
>>> @numpy_sin.impl('cpu'):
>>> def numpy_sin_impl_cpu(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Register an implementation for CUDA Tensors
>>> @numpy_sin.impl('cuda'):
>>> def numpy_sin_impl_cuda(x):
>>> return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device)
>>>
>>> x = torch.randn(3)
>>> numpy_sin(x) # calls numpy_sin_impl_cpu
>>>
>>> x_cuda = x.cuda()
>>> numpy_sin(x) # calls numpy_sin_impl_cuda
"""
if isinstance(device_types, str):
device_types = [device_types]
for device_type in device_types:
validate_device_type(device_type)
def inner(f):
for device_type in set(device_types):
self._check_doesnt_have_library_impl(device_type)
self._register_impl(device_type, f, stacklevel=_stacklevel)
dispatch_key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type]
library.impl(self._lib, self._opname, dispatch_key)(f)
return f
return inner
def _check_doesnt_have_library_impl(self, device_type):
if self._has_impl(device_type):
return
key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type]
if _C._dispatch_has_computed_kernel_for_dispatch_key(self._qualname, key):
raise RuntimeError(
f"impl(..., device_types={device_type}): the operator {self._qualname} "
f"already has an implementation for this device type via a "
f"pre-existing torch.library or TORCH_LIBRARY registration.")
def impl_factory(self) -> typing.Callable:
r"""Register an implementation for a factory function."""
def inner(f):
self._register_impl("factory", f)
library.impl(self._lib, self._opname, "BackendSelect")(f)
return f
return inner
def impl_abstract(self, _stacklevel=2) -> typing.Callable:
r"""Register an abstract implementation for this operator.
WARNING: please do not use this directly (and instead use the torch._custom_ops
APIs). Also please see the following for a detailed guide on custom ops.
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
An "abstract implementation" specifies the behavior of this operator on
Tensors that carry no data. Given some input Tensors with certain properties
(sizes/strides/storage_offset/device), it specifies what the properties of
the output Tensors are.
The abstract implementation has the same signature as the operator.
It is run for both FakeTensors and meta tensors. To write an abstract
implementation, assume that all Tensor inputs to the operator are
regular CPU/CUDA/Meta tensors, but they do not have storage, and
you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
The abstract implementation must consist of only PyTorch operations
(and may not directly access the storage or data of any input or
intermediate Tensors).
This API is used as a decorator (see examples).
Examples::
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Example 1: an operator without data-dependent output shape
>>> @custom_op('mylibrary::custom_linear')
>>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor):
>>> ...
>>>
>>> @custom_linear.impl_abstract():
>>> def custom_linear_abstract(x, weight):
>>> assert x.dim() == 2
>>> assert weight.dim() == 2
>>> assert bias.dim() == 1
>>> assert x.shape[1] == weight.shape[1]
>>> assert weight.shape[0] == bias.shape[0]
>>> assert x.device == weight.device
>>>
>>> return (x @ weight.t()) + bias
>>>
>>> # Example 2: an operator with data-dependent output shape
>>> @custom_op('mylibrary::custom_nonzero')
>>> def custom_nonzero(x: Tensor) -> Tensor:
>>> ...
>>>
>>> @custom_nonzero.impl_abstract():
>>> def custom_nonzero_abstract(x):
>>> # Number of nonzero-elements is data-dependent.
>>> # Since we cannot peek at the data in an abstract impl,
>>> # we use the ctx object to construct a new symint that
>>> # represents the data-dependent size.
>>> ctx = torch._custom_op.get_ctx()
>>> nnz = ctx.create_unbacked_symint()
>>> shape = [x.dim(), nnz]
>>> result = x.new_empty(shape, dtype=torch.long)
>>> return result
>>>
>>> @numpy_nonzero.impl(['cpu', 'cuda'])
>>> def custom_nonzero_impl(x):
>>> x_np = to_numpy(x)
>>> res = np.stack(np.nonzero(x_np), axis=1)
>>> # unbacked symbolic ints in PyTorch must be >= 2, so we
>>> # constrain the range to at least 2
>>> if res.shape[0] <= 1:
>>> raise RuntimeError("not supported")
>>> return torch.tensor(res, device=x.device)
"""
def inner(f):
frame = inspect.stack()[1]
self._check_doesnt_have_library_meta_impl()
self._register_impl("abstract", f, stacklevel=_stacklevel)
location = self._get_impl("abstract").location
qualname = self._qualname
# Handle DispatchKey.Meta registration
@functools.wraps(f)
def f_with_ctx(*args, **kwargs):
def error_on_ctx():
raise RuntimeError(
f"Attempted to call get_ctx() for the meta implementation "
f"for {qualname}."
f"You have presumably called get_ctx() because the operator "
f"has a data-dependent output shape; if so, there is no "
f"such meta implementation and this error is the correct "
f"behavior. Otherwise, please remove the call to get_ctx() "
f"in the implementation registered with impl_abstract "
f"at {location}"
)
with torch._library.abstract_impl.set_ctx_getter(error_on_ctx):
return f(*args, **kwargs)
self._lib.impl(self._opname, f_with_ctx, "Meta")
return f
return inner
def _check_can_register_backward(self):
def error(detail):
raise RuntimeError(
f"Cannot use torch._custom_ops APIs to register backward "
f"formula for {detail}. Got operator "
f"{self._qualname} with schema: {schema}"
)
schema = self._schema
if schema.kind() != SchemaKind.functional:
error("non-functional operator")
rets = schema.returns
if not schema.returns:
error("operator with no returns")
assert len(rets) > 0
is_non_mutating_view = any(
r.annotation is not None and not r.annotation.is_write for r in rets
)
if is_non_mutating_view:
error("operator that returns views")
# We make assumptions about the schema's return types.
allowed_return_types = {
BaseType(BaseTy.int): "int",
BaseType(BaseTy.SymInt): "SymInt",
BaseType(BaseTy.bool): "bool",
BaseType(BaseTy.float): "float",
BaseType(BaseTy.Tensor): "Tensor",
ListType(BaseType(BaseTy.Tensor), None): "List[Tensor]",
}
for ret in schema.returns:
if ret.type in allowed_return_types:
continue
error(f"operator with return not in {list(allowed_return_types.values())} (got {ret.type})")
def _check_doesnt_have_library_autograd_impl(self):
if self._registered_autograd_kernel_indirection:
return
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"):
raise RuntimeError(
f"impl_backward/impl_save_for_backward: the operator {self._qualname} "
f"already has an implementation for this device type via a "
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd."
f"CompositeImplicitAutograd operators do not need an autograd formula; "
f"instead, the operator will decompose into its constituents and those "
f"can have autograd formulas defined on them.")
# We can improve this by adding "all Autograd<BACKEND> keys", but
# realistically people will just be using this API for CPU/CUDA for now.
for key in ["Autograd", "AutogradCPU", "AutogradCUDA"]:
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, key):
raise RuntimeError(
f"impl_backward/impl_save_for_backward: "
f"the operator {self._qualname} already has an Autograd kernel "
f"registered to DispatchKey::{key} vi a pre-existing "
f"torch.library or TORCH_LIBRARY registration. Please either "
f"remove those registrations or don't use the torch._custom_ops APIs")
def _check_doesnt_have_library_meta_impl(self):
if self._has_impl("abstract"):
return
# If the user's operator is CompositeExplicitAutograd,
# allow them to impl_abstract. This is being pragmatic
# (existing custom ops may have CompositeExplicitAutograd
# registration that don't work with Meta kernels, so this
# gives them an escape hatch).
if (
_C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeExplicitAutograd")
and not _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta")
):
return
# Otherwise, if the user's already has a Meta kernel or their
# op is CompositeImplicitAutograd or some other alias dispatch key,
# raise.
# Special case for CompositeImplicitAutograd
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"):
raise RuntimeError(
f"impl_abstract(...): the operator {self._qualname} "
f"already has an implementation for this device type via a "
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd."
f"CompositeImplicitAutograd operators do not need an abstract impl; "
f"instead, the operator will decompose into its constituents and those "
f"can have abstract impls defined on them.")
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta"):
raise RuntimeError(
f"impl_abstract(...): the operator {self._qualname} "
f"already has an DispatchKey::Meta implementation via a "
f"pre-existing torch.library or TORCH_LIBRARY registration. "
f"Please either remove that registration or don't call impl_abstract.")
# NOTE ["backward", "save_for_backward", and "autograd"]
# As a part of the explicit autograd API, a user must provide us
# a "save_for_backward" function and a "backward" function.
# When both of these have been provided, then we automatically
# construct the "autograd" kernel.
def _register_autograd_kernel(self):
assert self._has_impl("backward")
assert self._has_impl("save_for_backward")
kernel = construct_autograd_kernel(
self._schema,
self._output_differentiability,
self,
get_op(self._qualname),
self._get_impl("save_for_backward").func,
self._get_impl("backward").func)
self._register_impl("autograd", kernel)
def impl_save_for_backward(self, _stacklevel=2):
r"""Register a function that tells us what to save for backward.
Please see impl_backward for more details.
"""
def inner(f):
self._check_can_register_backward()
self._check_doesnt_have_library_autograd_impl()
if not self._registered_autograd_kernel_indirection:
self._register_autograd_kernel_indirection()
self._register_impl("save_for_backward", f, stacklevel=_stacklevel)
if self._has_impl("backward"):
self._register_autograd_kernel()
return inner
def impl_backward(self, output_differentiability=None, _stacklevel=2):
r"""Registers a backward formula.
WARNING: if you're a user, please do not use this directly
(instead use the torch._custom_ops APIs).
Also please see the following for a detailed guide on custom ops.
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
In order for the CustomOp to work with autograd, you need to register
a backward formula. There are two pieces to this:
1. You must give us a function to specify what to save for backward.
Call this the "save for backward" function.
2. You must give us a function that computes gradients. Call this the
"backward" function.
Use `impl_save_for_backward` to define a "save for backward" function
that specifies what gets saved for backward. The function should accept
two arguments ``(inputs, output)`` and return the quantities to be saved
for backward.
During runtime, when you call the CustomOp, PyTorch will invoke the
"save for backward" function with the inputs and output of the CustomOp.
Use `impl_backward` to define the "backward" function. The backward
function must accept ``(ctx, saved, *grads)``:
- ``ctx`` is a context object where we may provide information
- ``saved`` is exactly what gets returned from the "save for backward"
function
- ``grads`` is one or more gradients. The number of gradients matches
the number of outputs of the CustomOp.
The backward function must return a dict that maps the name of
an input to the CustomOp to its corresponding gradient. All inputs that
were declared to be Tensors in the CustomOp definition must be accounted
for in the dict. The gradient may be a Tensor or None.
"""
if output_differentiability is not None:
def yell():
raise RuntimeError(
f"impl_backward(output_differentiability): expected "
f"output_differentiability to be a list of bools with "
f"length equal to the number of outputs of this CustomOp "
f"got: {output_differentiability}")
if not isinstance(output_differentiability, list):
yell()
for diff in output_differentiability:
if not isinstance(diff, bool):
yell()
if len(self._schema.returns) != len(output_differentiability):
yell()
def inner(f):
self._check_can_register_backward()
self._check_doesnt_have_library_autograd_impl()
if not self._registered_autograd_kernel_indirection:
self._register_autograd_kernel_indirection()
self._register_impl("backward", f, stacklevel=_stacklevel)
self._output_differentiability = output_differentiability
if self._has_impl("save_for_backward"):
self._register_autograd_kernel()
return inner
@dataclasses.dataclass
class FuncAndLocation:
func: typing.Callable
location: str
def find_ophandle_or_throw(cpp_ns: str, operator_name: OperatorName):
overload_name = (
"" if operator_name.overload_name is None else operator_name.overload_name
)
return _C._dispatch_find_schema_or_throw(
f"{cpp_ns}::{str(operator_name.name)}", overload_name
)
def validate_namespace(ns: str) -> None:
if "." in ns:
raise ValueError(
f'custom_op(..., ns="{ns}"): expected ns to not contain any . (and be a '
f"valid variable name)"
)
if ns in RESERVED_NS:
raise ValueError(
f"custom_op(..., ns='{ns}'): '{ns}' is a reserved namespace, "
f"please choose something else. "
)
def validate_schema(schema: FunctionSchema) -> None:
# Coming in the future. Requires us to have correct logic for
# the ADInplaceOrView key
if schema.kind() != SchemaKind.functional:
raise ValueError(
f"custom_op does not support non-functional function schema. Got: {schema}"
)
rets = schema.returns
is_non_mutating_view = len(rets) > 0 and any(
r.annotation is not None and not r.annotation.is_write for r in rets
)
if is_non_mutating_view:
raise ValueError(f"custom_op does not support view functions. Got: {schema}")
# Just seems weird so banning for now
if not schema.returns:
raise ValueError(
f"custom_op does not support function schema with no outputs. Got: {schema}"
)
# For simplicity: don't allow self arguments
if schema.arguments.self_arg is not None:
raise ValueError(
f"custom_op does not support arguments named 'self'. Please "
f"rename your argument. Got: {schema}"
)
def parse_qualname(qualname: str) -> typing.Tuple[str, str]:
names = qualname.split("::", 1)
if len(names) != 2:
raise ValueError(f"Expected there to be a namespace in {qualname}, i.e. The "
f"operator name should look something like ns::foo")
if '.' in names[1]:
raise ValueError(f"The torch.custom_ops APIs do not handle overloads, "
f"i.e. operator names with '.' in them. "
f"Please name your operator something like ns::foo. "
f"Got: {qualname}")
return names[0], names[1]
def validate_device_type(device_type: str) -> None:
if device_type not in SUPPORTED_DEVICE_TYPE_TO_KEY:
raise ValueError(
f"CustomOp.impl(device_types=[{device_type}, ...]): we only support device_type "
f"in {SUPPORTED_DEVICE_TYPE_TO_KEY.keys()}."
)
def supported_param(param: inspect.Parameter) -> bool:
return param.kind in (
inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY,
)
def validate_function_matches_schema(
schema: FunctionSchema, func: typing.Callable
) -> None:
sig = inspect.signature(func)
if not all(supported_param(p) for _, p in sig.parameters.items()):
raise ValueError(
f"custom_op(..., manual_schema)(func): positional-only args, "
f"varargs, and kwargs are not supported. Please rewrite `func` "
f"to not have them. Got `func` with signature: {sig}"
)
if (
any(
p.annotation is not inspect.Parameter.empty
for _, p in sig.parameters.items()
)
or sig.return_annotation is not inspect.Signature.empty
):
raise ValueError(
f"custom_op(..., manual_schema)(func): When passing in a manual "
f"schema, we expect `func` to have no type annotations to avoid "
f"ambiguity. Got `func` with signature: {sig}"
)
positional = [
(name, param)
for name, param in sig.parameters.items()
if param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
]
kwargonly = [
(name, param)
for name, param in sig.parameters.items()
if param.kind == inspect.Parameter.KEYWORD_ONLY
]
def error():
raise ValueError(
f"custom_op(..., manual_schema)(func): When passing in a manual "
f"schema, we expect `func`'s signature to match `manual_schema` "
f"(aside from type annotations). "
f"func's signature: {sig}, manual_schema: {schema}"
)
def error_default_args():
raise ValueError(
f"custom_op(..., manual_schema)(func): "
f"neither func nor manual_schema should have default "
f"arguments. Got "
f"func's signature: {sig}, manual_schema: {schema}"
)
def compare(sig_args, schema_args):
if len(sig_args) != len(schema_args):
error()
for (name, param), arg in zip(sig_args, schema_args):
if name != arg.name:
error()
if param.default is not inspect.Parameter.empty or arg.default is not None:
error_default_args()
compare(positional, schema.arguments.flat_positional)
compare(kwargonly, schema.arguments.flat_kwarg_only)
def infer_schema(prototype_function: typing.Callable) -> str:
sig = inspect.signature(prototype_function)
def error_fn(what):
raise ValueError(
f"custom_op(...)(func): {what} " f"Got func with signature {sig})"
)
params = [
parse_param(name, param, error_fn) for name, param in sig.parameters.items()
]
ret = parse_return(sig.return_annotation, error_fn)
return f"({', '.join(params)}) -> {ret}"
def parse_param(name, param, error_fn):
if not supported_param(param):
error_fn("We do not support positional-only args, varargs, or varkwargs.")
if param.annotation is inspect.Parameter.empty:
error_fn(f"Parameter {name} must have a type annotation.")
if param.annotation not in SUPPORTED_PARAM_TYPES.keys():
error_fn(
f"Parameter {name} has unsupported type {param.annotation}. "
f"The valid types are: {SUPPORTED_PARAM_TYPES.keys()}."
)
if param.default is not inspect.Parameter.empty:
error_fn(
f"Parameter {name} has a default value; this is not supported. "
f"If you want to use default values then create a function with "
f"default values that calls the CustomOp"
)
return f"{SUPPORTED_PARAM_TYPES[param.annotation]} {name}"
def derived_types(
base_type, cpp_type, list_base, optional_base_list, optional_list_base
):
result = [
(base_type, cpp_type),
(typing.Optional[base_type], f"{cpp_type}?"),
]
if list_base:
result.append((typing.Sequence[base_type], f"{cpp_type}[]")) # type: ignore[valid-type]
if optional_base_list:
result.append((typing.Sequence[typing.Optional[base_type]], f"{cpp_type}?[]")) # type: ignore[valid-type]
if optional_list_base:
result.append((typing.Optional[typing.Sequence[base_type]], f"{cpp_type}[]?")) # type: ignore[valid-type]
return result
def get_supported_param_types():
data = [
# (python type, schema type, type[] variant, type?[] variant, type[]? variant
(torch.Tensor, "Tensor", True, True, False),
(int, "SymInt", True, False, True),
(float, "float", True, False, True),
(bool, "bool", True, False, True),
(str, "str", False, False, False),
(torch.types.Number, "Scalar", True, False, False),
(torch.dtype, "ScalarType", False, False, False),
(torch.device, "Device", False, False, False),
]
result = []
for line in data:
result.extend(derived_types(*line))
return dict(result)
SUPPORTED_RETURN_TYPES = {
torch.Tensor: "Tensor",
typing.List[torch.Tensor]: "Tensor[]",
int: "SymInt",
float: "float",
bool: "bool",
torch.types.Number: "Scalar",
}
def parse_return(annotation, error_fn):
origin = typing.get_origin(annotation)
if origin is not tuple:
if annotation not in SUPPORTED_RETURN_TYPES.keys():
error_fn(
f"Return has unsupported type {annotation}. "
f"The valid types are: {SUPPORTED_RETURN_TYPES}."
)
return SUPPORTED_RETURN_TYPES[annotation]
args = typing.get_args(annotation)
for arg in args:
if arg not in SUPPORTED_RETURN_TYPES:
error_fn(
f"Return has unsupported type {annotation}. "
f"The valid types are: {SUPPORTED_RETURN_TYPES}."
)
return "(" + ", ".join([SUPPORTED_RETURN_TYPES[arg] for arg in args]) + ")"
SUPPORTED_PARAM_TYPES = get_supported_param_types()
def report_error_callback(custom_op: typing.Any, key: str) -> None:
if key == "Undefined":
raise NotImplementedError(
f"{custom_op}: There were no Tensor inputs to this operator "
f"(e.g. you passed an empty list of Tensors). If your operator is a "
f"factory function (that is, it takes no Tensors and constructs "
f"a new one), then please use CustomOp.impl_factory to register "
f"an implementation for it"
)
if key == "Meta":
raise NotImplementedError(
f"{custom_op}: when running with device='Meta' tensors: there is no "
f"abstract impl registered for this CustomOp. Please register one via "
f"CustomOp.impl_abstract to get this CustomOp to work with Meta tensors"
)
if key in ("CPU", "CUDA"):
device = key.lower()
raise NotImplementedError(
f"{custom_op}: when running with device='{device}' tensors: there is no "
f"{device} impl registered for this CustomOp. Please register one via "
f"CustomOp.impl(device_type='{device}')"
)
raise NotImplementedError(
f"{custom_op}: No implementation for dispatch key {key}. It is likely "
f"that we have not added this functionality yet, please either open an "
f"issue or if you're feeling adventurous, use the low-level "
f"torch.library API"
)
def custom_op_from_existing(op):
ns = op.namespace
lib = torch.library.Library(ns, "FRAGMENT")
name = op.name().split("::")[-1]
schema_str = str(op._schema)
# CustomOp expects the schema string without the namespace
schema_str = schema_str.split("::")[-1]
schema = FunctionSchema.parse(schema_str)
return CustomOp(lib, ns, schema, name, op, _private_access=True)
def get_op(qualname):
def error_not_found():
raise ValueError(
f"Could not find the operator {qualname}. Please make sure you have "
f"already registered the operator and (if registered from C++) "
f"loaded it via torch.ops.load_library.")
ns, name = parse_qualname(qualname)
if not hasattr(torch.ops, ns):
error_not_found()
opnamespace = getattr(torch.ops, ns)
if not hasattr(opnamespace, name):
error_not_found()
packet = getattr(opnamespace, name)
if not hasattr(packet, 'default'):
error_not_found()
return packet.default
def _find_custom_op(qualname, also_check_torch_library=False):
if qualname in global_registry:
return global_registry[qualname]
if not also_check_torch_library:
raise RuntimeError(
f"Could not find custom op \"{qualname}\". Did you register it via "
f"the torch._custom_ops API?")
overload = get_op(qualname)
result = custom_op_from_existing(overload)
return result
def get_abstract_impl(qualname):
if qualname not in torch._custom_op.impl.global_registry:
return None
custom_op = torch._custom_op.impl.global_registry[qualname]
if custom_op is None:
return None
if not custom_op._has_impl("abstract"):
return None
return custom_op._get_impl("abstract").func
def _custom_op_with_schema(qualname, schema):
ns, name = qualname.split("::")
schema_str = f"{name}{schema}"
function_schema = FunctionSchema.parse(schema_str)
validate_schema(function_schema)
lib = library.Library(ns, "FRAGMENT")
lib.define(schema_str)
ophandle = find_ophandle_or_throw(ns, function_schema.name)
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True)
result._register_autograd_kernel_indirection()
torch._C._dispatch_set_report_error_callback(
ophandle, functools.partial(report_error_callback, weakref.proxy(result))
)
return get_op(qualname)