forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfx_minifier.py
428 lines (357 loc) · 15.6 KB
/
fx_minifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import torch.fx as fx
import copy
import torch
import math
import sys
from typing import Callable, List
from functools import wraps, partial
from dataclasses import dataclass
from .compile_utils import get_placeholders, get_outputs
from torch.utils._content_store import ContentStoreWriter
from torch.hub import tqdm
from torch.multiprocessing.reductions import StorageWeakRef
import os.path
is_tuple = object()
@dataclass
class LoadTensorMeta:
size: List[int]
stride: List[int]
dtype: torch.dtype
device: torch.device
class ConcreteProp(torch.fx.Interpreter):
def __init__(self, mod, *, writer=None, skip_offload=False):
super().__init__(mod)
self.writer = writer
self.skip_offload = skip_offload
self.seen_storages = set()
def run_node(self, n):
self.pbar.update(1)
r = super().run_node(n)
name = n.name
if isinstance(r, torch.Tensor):
if self.writer is None:
n.meta['concrete_value'] = r
else:
if StorageWeakRef(r.untyped_storage()) in self.seen_storages:
# Refuse to offload tensors which alias other live
# tensors, because this will violate operator contracts
n.meta['concrete_value'] = None
else:
if not self.skip_offload:
self.writer.write_tensor(os.path.join("eager", name), r)
n.meta['concrete_value'] = LoadTensorMeta(
r.size(),
r.stride(),
r.dtype,
r.device
)
self.seen_storages.add(StorageWeakRef(r.untyped_storage()))
else:
n.meta['concrete_value'] = is_tuple
return r
def propagate(self, *args):
with tqdm(
desc="Saving intermediates for delta debugging",
total=len(self.module.graph.nodes),
disable=self.writer is None
) as pbar:
self.pbar = pbar
r = super().run(*args)
if not self.skip_offload:
pbar.set_description("Saved! To skip next time, run with --skip-saving-eager-intermediates")
return r
def is_load_tensor_node(node):
return node.op == 'call_function' and node.target is torch.ops.debugprims.load_tensor.default
# inplace modifies node/inps
def _convert_node_to_placeholder(graph, node, inps):
if node.op == 'output' or node.op == "placeholder":
return False
if is_load_tensor_node(node):
return False
concrete_val = node.meta.get('concrete_value', None)
if isinstance(concrete_val, torch.Tensor):
node.op = 'placeholder'
node.target = node.name
node.args = ()
node.kwargs = {}
inps.append(concrete_val)
return True
elif concrete_val is None:
return False
elif concrete_val is is_tuple:
r = False
for tuple_user in list(node.users):
r = _convert_node_to_placeholder(graph, tuple_user, inps) or r
# NB: We must not erase the node at this point, because
# we are iterating over the nodes and this would change
# the iteration order
# graph.erase_node(node)
return r
elif isinstance(concrete_val, LoadTensorMeta):
node.op = 'call_function'
node.target = torch.ops.debugprims.load_tensor.default
node.args = (os.path.join("eager", node.name), concrete_val.size, concrete_val.stride)
node.kwargs = {
'device': concrete_val.device,
'dtype': concrete_val.dtype,
}
return True
return False
def dump_state(fx_g, inps):
print(f"""
# Working Repro with {len(fx_g.graph.nodes)} nodes
inps = {[(i.shape, i.dtype, i.device.type) for i in inps]}
inps = [torch.zeros(())] + [torch.ones(shape, dtype=dtype, device=device) for (shape, dtype, device) in inps]
{fx_g.code}
""")
def is_power_of_two(n):
if n == 0:
return False
return (n & (n - 1)) == 0
@dataclass
class ReproState:
graph: fx.Graph
inps: List[torch.Tensor]
def __post_init__(self):
ph_nodes = get_placeholders(self.graph)
assert len(ph_nodes) == len(self.inps)
def minifier(
fail_f: fx.GraphModule, inps, module_fails, dump_state: Callable = dump_state, *,
save_dir=None, offload_to_disk=False, skip_offload=False, skip_sanity=False,
max_granularity=None
):
"""
Minimizes a FX graph with given inputs, such that the resulting FX graph still returns True for module_fails.
Does 2 main strategies:
1. Truncates suffix: Removes some suffix from the graph and sets a new output.
2. Delta Debugging: Tries replacing half of the graph with inputs. If fails,
tries replacing quarter of the graph, etc.
>>> # xdoctest: +SKIP(failing)
>>> failing_function = fx.symbolic_trace(f)
>>> minimize(failing_function, [torch.randn(5)], lambda fx_g, inps: fx_g(*inps))
note: module_fails returns True if it fails.
"""
assert isinstance(inps, (tuple, list))
failing_graph = fail_f.graph
cur_size = len(failing_graph.nodes)
if max_granularity is not None and not is_power_of_two(max_granularity):
raise RuntimeError(f"max_granularity {max_granularity} not power of two")
num_queries = 0
def deepcopy_fx_graph(fx_graph):
return fx.GraphModule(fail_f, copy.deepcopy(fx_graph)).graph
def graph_fails(graph, inps):
nonlocal num_queries
graph = copy.deepcopy(graph)
num_queries += 1
mod = fx.GraphModule(fail_f, graph)
mod.graph.lint()
return module_fails(mod, inps)
writer = None
if offload_to_disk:
writer = ContentStoreWriter(save_dir)
ConcreteProp(fail_f, writer=writer, skip_offload=skip_offload).propagate(*inps)
if not skip_sanity and not graph_fails(failing_graph, inps):
raise RuntimeError("Input graph did not fail the tester")
print(f"Started off with {cur_size} nodes", file=sys.stderr)
def _register_strategy(strategy: Callable, name: str):
@wraps(strategy)
def new_func(old_state: ReproState, granularity=1):
print(file=sys.stderr)
print(
f"Strategy: {name} (G: {granularity}) "
f"({len(old_state.graph.nodes)} nodes, {len(old_state.inps)} inputs)",
file=sys.stderr
)
new_state = strategy(deepcopy_fx_graph(old_state.graph), list(old_state.inps), granularity)
if new_state is not None:
new_nodes = len(new_state.graph.nodes)
old_nodes = len(old_state.graph.nodes)
new_inps = len(new_state.inps)
old_inps = len(old_state.inps)
new_outs = len(get_outputs(new_state.graph))
old_outs = len(get_outputs(old_state.graph))
progress_made = False
if new_nodes < old_nodes:
progress_made = True
print(f"SUCCESS: Went from {old_nodes} to {new_nodes} nodes", file=sys.stderr)
if new_inps > old_inps:
progress_made = True
print(f"SUCCESS: Went from {old_inps} to {new_inps} inputs", file=sys.stderr)
if new_outs < old_outs:
progress_made = True
print(f"SUCCESS: Went from {old_outs} to {new_outs} outputs", file=sys.stderr)
if not progress_made:
raise RuntimeError("Success raised but no progress made?")
if not graph_fails(new_state.graph, new_state.inps):
print("WARNING: Something went wrong, not applying this minification", file=sys.stderr)
return None
return new_state
else:
print(f"FAIL: {name}", file=sys.stderr)
return None
return new_func
def register_strategy(name: str):
return partial(_register_strategy, name=name)
@register_strategy("Truncate suffix")
def remove_suffix(cur_graph, cur_inps, granularity):
tested = set()
new_graph = fx.Graph()
env = {}
for idx, node in enumerate(cur_graph.nodes):
new_node = new_graph.node_copy(node, lambda x: env[x])
if node.op not in ['placeholder', 'output']:
# If idx is divisible by (granularity * 2), it would have been checked already.
if idx % granularity == 0 and (idx % (granularity * 2) != 0) and idx not in tested:
output_node = new_graph.output((new_node,))
if len(new_graph.nodes) < len(cur_graph.nodes) and graph_fails(new_graph, cur_inps):
return ReproState(new_graph, cur_inps)
else:
tested.add(idx)
new_graph.erase_node(output_node)
env[node] = new_node
return None
@register_strategy("Remove outputs")
def remove_outputs(cur_graph, cur_inps, granularity):
granularity = max(1, granularity // 2)
for idx, node in enumerate(cur_graph.nodes):
node.idx = idx
if node.op == 'output':
output = node
break
if isinstance(output.args[0], fx.Node):
return None
output_args = sorted(output.args[0], key=lambda x: x.idx if isinstance(x, fx.Node) else int(1e9))
if len(output_args) == 1:
return None
for idx in range(0, len(output_args), granularity):
output.args = (output_args[:idx] + output_args[idx + granularity:],)
if graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
def remove_unused_inputs_unchecked(cur_state: ReproState):
cur_graph = cur_state.graph
cur_inps = cur_state.inps
ph_nodes = get_placeholders(cur_graph)
assert len(ph_nodes) == len(cur_inps)
new_inps = []
for idx in range(len(ph_nodes)):
if len(ph_nodes[idx].users) == 0:
cur_graph.erase_node(ph_nodes[idx])
else:
new_inps.append(cur_inps[idx])
if len(new_inps) < len(cur_inps):
return ReproState(cur_graph, new_inps)
return None
def remove_unused_inputs_checked(cur_state: ReproState):
new_state = remove_unused_inputs_unchecked(cur_state)
if new_state is not None and graph_fails(new_state.graph, new_state.inps):
return new_state
return None
def _remove_unused_wrapper(cur_graph, cur_inps, granularity):
return remove_unused_inputs_checked(ReproState(cur_graph, cur_inps))
remove_unused_inputs = register_strategy("Remove unused inputs")(_remove_unused_wrapper)
@register_strategy("Eliminate dead code")
def eliminate_dead_code(cur_graph, cur_inps, granularity):
if cur_graph.eliminate_dead_code() and graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
def _consolidate_placeholders(cur_graph, inps):
new_graph = fx.Graph()
env = {}
seen_non_placeholder = False
# Move all placeholders to the front; also, if any load_tensor
# is at the front, convert it into an input (because it can be live
# all the time)
for node in cur_graph.nodes:
if node.op == 'placeholder':
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
elif not seen_non_placeholder and is_load_tensor_node(node):
new_node = new_graph.placeholder(node.name)
env[node] = new_node
inps.append(torch.ops.debugprims.load_tensor.default(*node.args, **node.kwargs))
else:
seen_non_placeholder = True
# Move everyone else
for node in cur_graph.nodes:
if node not in env:
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
return new_graph
@register_strategy("Delta Debugging")
def delta_debugging(cur_graph: fx.Graph, cur_inps, granularity):
num_nodes = len(cur_graph.nodes)
for start_range in range(0, num_nodes, granularity):
is_removing = False
new_graph = deepcopy_fx_graph(cur_graph)
new_inps = cur_inps[:]
end_range = min(num_nodes, start_range + granularity)
for idx in range(start_range, end_range):
new_node = list(new_graph.nodes)[idx]
if _convert_node_to_placeholder(new_graph, new_node, new_inps):
is_removing = True
if not is_removing:
continue
new_graph.eliminate_dead_code()
new_graph = _consolidate_placeholders(new_graph, new_inps)
new_state = remove_unused_inputs_unchecked(ReproState(new_graph, new_inps))
if new_state is None:
new_state = ReproState(new_graph, new_inps)
if graph_fails(new_state.graph, new_state.inps):
return ReproState(new_state.graph, new_state.inps)
return None
@register_strategy("Consolidate Inputs")
def consolidate_inputs(cur_graph, cur_inps, granularity):
old_len = len(cur_inps)
cur_graph = _consolidate_placeholders(cur_graph, cur_inps)
if len(cur_inps) > old_len and graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
failing_state = ReproState(failing_graph, inps)
def try_granularity(failing_state, granularity, use_non_granular):
print(f"Trying granularity {granularity}", file=sys.stderr)
strategies = []
num_nodes = len(failing_state.graph.nodes)
num_outputs = len(get_outputs(failing_state.graph))
if num_outputs > num_nodes // 2:
strategies += [remove_outputs]
if use_non_granular:
strategies += [eliminate_dead_code, remove_unused_inputs, consolidate_inputs]
strategies += [remove_suffix, delta_debugging]
for strategy in strategies:
new_state = strategy(failing_state, granularity)
if new_state is not None:
return new_state
return None
while True:
dump_state(fx.GraphModule(fail_f, failing_state.graph), failing_state.inps)
granularity = int(2**(math.floor(math.log2(len(failing_state.graph.nodes)))))
if max_granularity is not None:
granularity = min(max_granularity, granularity)
new_state = try_granularity(failing_state, granularity, use_non_granular=True)
if new_state is not None:
failing_state = new_state
continue
granularity //= 2
has_progress = False
while granularity >= 1:
new_state = try_granularity(failing_state, granularity, use_non_granular=False)
if new_state is not None:
failing_state = new_state
has_progress = True
break
granularity //= 2
if has_progress:
continue
new_state = remove_outputs(failing_state, 1)
if new_state is not None:
failing_state = new_state
continue
break
if not graph_fails(failing_state.graph, failing_state.inps):
raise RuntimeError("Uh oh, something went wrong :( Final graph is not failing")
print(f"Made {num_queries} queries", file=sys.stderr)
failing_fx = fx.GraphModule(fail_f, failing_state.graph)
dump_state(failing_fx, failing_state.inps)
print("Wrote minimal repro out to repro.py", file=sys.stderr)
return failing_fx, failing_state.inps