forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_nccl.cpp
309 lines (266 loc) · 8.74 KB
/
python_nccl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#include <torch/csrc/cuda/python_nccl.h>
#include <ATen/core/functional.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/utils/pybind.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/irange.h>
#include <sstream>
#include <unordered_map>
using namespace at;
using namespace torch;
using namespace torch::cuda::nccl;
using namespace torch::cuda::nccl::detail;
static const char* COMM_CAPSULE_NAME = "torch.cuda.nccl.Communicator";
PyObject* THCPModule_nccl_version(PyObject* self, PyObject* args) {
return PyInt_FromLong(version());
}
PyObject* THCPModule_nccl_unique_id(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
ncclUniqueId id;
get_unique_id(id);
return PyBytes_FromStringAndSize((char*)&id, NCCL_UNIQUE_ID_BYTES);
END_HANDLE_TH_ERRORS
}
static ncclComm_t unpack_nccl_comm(PyObject* capsule) {
ncclComm_t comm =
(ncclComm_t)PyCapsule_GetPointer(capsule, COMM_CAPSULE_NAME);
if (!comm)
throw python_error();
return comm;
}
static void destroy_nccl_comm(PyObject* capsule) {
HANDLE_TH_ERRORS
ncclComm_t comm = unpack_nccl_comm(capsule);
{
pybind11::gil_scoped_release no_gil;
comm_destroy(comm);
}
END_HANDLE_TH_ERRORS_RET()
}
static std::vector<c10::optional<at::cuda::CUDAStream>> unpack_streams(
PyObject* obj,
size_t size) {
if (obj == Py_None) {
return std::vector<c10::optional<at::cuda::CUDAStream>>(size, c10::nullopt);
}
auto streams = THPUtils_PySequence_to_CUDAStreamList(obj);
if (streams.size() != size) {
throw std::runtime_error(
"number of streams is not equal to number of inputs");
}
return streams;
}
static inline at::Tensor extract_tensor(PyObject* obj);
static inline std::vector<at::Tensor> extract_tensors(PyObject* obj);
static std::vector<ncclComm_t> unpack_comms(PyObject* obj, size_t size) {
if (obj == Py_None) {
return std::vector<ncclComm_t>();
}
std::vector<ncclComm_t> comms;
if (PyCapsule_CheckExact(obj)) {
comms = {unpack_nccl_comm(obj)};
} else {
auto seq = THPObjectPtr(PySequence_Fast(obj, "comm is not a sequence"));
if (!seq)
throw python_error();
auto size = PySequence_Fast_GET_SIZE(seq.get());
comms = std::vector<ncclComm_t>(size);
for (const auto i : c10::irange(size)) {
comms[i] = unpack_nccl_comm(PySequence_Fast_GET_ITEM(seq.get(), i));
}
}
if (comms.size() != size) {
throw std::runtime_error(
"number of communicators is not equal to number of inputs");
}
return comms;
}
PyObject* THCPModule_nccl_init_rank(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
int nranks;
const char* id;
Py_ssize_t id_len;
int rank;
if (!PyArg_ParseTuple(
args, "is#i:nccl_init_rank", &nranks, &id, &id_len, &rank)) {
return nullptr;
}
THPUtils_assert(
id_len == NCCL_UNIQUE_ID_BYTES,
"invalid unqiue_id (expected %d bytes, got %zd)",
NCCL_UNIQUE_ID_BYTES,
id_len);
ncclUniqueId commId;
memcpy(&commId, id, NCCL_UNIQUE_ID_BYTES);
ncclComm_t comm;
{
pybind11::gil_scoped_release no_gil;
comm = comm_init_rank(nranks, commId, rank);
}
return PyCapsule_New(comm, COMM_CAPSULE_NAME, &destroy_nccl_comm);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_reduce(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_output, *_streams, *_comms;
int root, op;
if (!PyArg_ParseTuple(
args, "OOiiOO", &_inputs, &_output, &root, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_reduce",
1,
"(sequence[Tensor] inputs, Tensor output, int root,"
" int op, sequence[torch.cuda.Stream or None]");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
auto output = extract_tensor(_output);
std::vector<c10::optional<at::cuda::CUDAStream>> streams =
unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
torch::cuda::nccl::reduce(inputs, output, root, op, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_all_reduce(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
int op;
if (!PyArg_ParseTuple(
args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_all_reduce",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op,"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
all_reduce(inputs, outputs, op, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_broadcast(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_streams, *_comms;
int root;
if (!PyArg_ParseTuple(args, "OiOO", &_inputs, &root, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_broadcast",
1,
"(sequence[Tensor] inputs, int root"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
THPUtils_assert(root >= 0 && (size_t)root < inputs.size(), "invalid root");
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
torch::cuda::nccl::broadcast(inputs, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_all_gather(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
if (!PyArg_ParseTuple(
args, "OOOO", &_inputs, &_outputs, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_all_gather",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
all_gather(inputs, outputs, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_reduce_scatter(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs, *_outputs, *_streams, *_comms;
int op;
if (!PyArg_ParseTuple(
args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_reduce_scatter",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
reduce_scatter(inputs, outputs, op, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static inline at::Tensor extract_tensor(PyObject* obj) {
if (!THPVariable_Check(obj)) {
throw torch::TypeError("expected Tensor (got %s)", Py_TYPE(obj)->tp_name);
}
return THPVariable_Unpack(obj);
}
static inline std::vector<at::Tensor> extract_tensors(PyObject* obj) {
auto seq = THPObjectPtr(PySequence_Fast(obj, "expected a sequence"));
if (!seq)
throw python_error();
const Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
std::vector<at::Tensor> list;
if (length >= 0) {
list.reserve(length);
}
for (Py_ssize_t i = 0; i < length; i++) {
PyObject* item = PySequence_Fast_GET_ITEM(seq.get(), i);
if (!THPVariable_Check(item)) {
throw torch::TypeError(
"expected Tensor at %d (got %s)", (int)i, Py_TYPE(item)->tp_name);
}
list.emplace_back(THPVariable_Unpack(item));
}
return list;
}