forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_functional_collectives.py
587 lines (476 loc) · 24.2 KB
/
_functional_collectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import warnings
import sys
import torch
import torch.distributed as dist
import torch.distributed.distributed_c10d as c10d
from typing import Tuple, Union, List, cast, TYPE_CHECKING
from torch.utils._pytree import tree_map_only
from . import _functional_collectives_impl as fun_col_impl
from ._functional_collectives_impl import _register_tensor_wrapper
from torch.fx.experimental.proxy_tensor import (
get_innermost_proxy_mode,
)
if torch._running_with_deploy():
def is_torchdynamo_compiling():
"""Can't import torchdynamo in torchdeploy builds currently."""
return False
else:
try:
from torch._dynamo.external_utils import is_compiling as is_torchdynamo_compiling
except Exception:
warnings.warn(
"Unable to import torchdynamo util `is_torchdynamo_compiling`, so won't support torchdynamo correctly"
)
def is_torchdynamo_compiling():
return False
"""
New traceable, functional collectives.
RFC: https://github.com/pytorch/pytorch/issues/93173
compiler: trace these ops with plain-old-data schemas, then choose how to lower them.
eager: execute these 'functional' ops which in eager return AsyncCollectiveTensor subclasses,
automatically calling .wait() on underlying/hidden async 'work' obj only when fed to
a downstream op.
Issues:
* Where should these ops live? Couldn't `import torch` if putting these ops in existing torch.distributed files
* Proper support for eager requires inplace ops. We should explore having it as an option for the API.
"""
"""
Functional collectives are asynchronous only and we perform implicit stream synchronization
on behalf of the user.
We use AsyncCollectiveTensor to wrap the result tensor of a collective and it lets us witness
first usage of the tensor and insert cross stream sync at the right place.
The above are the easy bits, the hard one is how we match the Work object returned by
c10d and the tensor AsyncCollectiveTensor wraps. We alloc the tensor inside the collective
op implementation (see ``clone()`` call in ``_all_reduce``) and then it's handled by the
dispatcher which might call other implementations that are allowed to change the returned
tensor - even return a tensor with a different shape (see ``torch.vmap``).
This means the caller of our ops receives a Tensor that is not guaranteed to be the same
allocated by our implementations and that makes pairing The AsyncTensor to the original
tensor a lot harder. This pairing is needed so we can lookup the Work object to use.
Originally, we tried WeakKeyDictionary to map from Tensor to Work, but because Tensor's
identity is not stable across dispatch, the op caller would end up with a different Tensor
instance that would not match any in the dictionary.
With Tensor identity out of the question, we decided use the tensor data pointer, which
should be stable across all the Tensor changes done during dispatch.
We have a dictionary of tensor::data_ptr -> Work that we insert right after we call into c10d.
We use this dictionary when AsyncCollectiveTensor is used to invoke Work::wait()
Finally, we setup a finalizer against the tensor wrapper to observe it getting collected so we
can clean up stale entries in the dictionary.
To eliminate the possibility of races we have a global version counter that is used by the finalizer.
As a wise man said once: Don't cross the streams (https://www.youtube.com/watch?v=wyKQe_i9yyo)
"""
"""
Functional collectives can accept any of these types to describe the ranks participating in collectives.
The different types will be desugared to a canonical format
"""
RANK_TYPES = Union[List[int], List[List[int]], dist.ProcessGroup, "dist._tensor.DeviceMesh", Tuple["dist._tensor.DeviceMesh", int]]
"""
User facing APIs for functional collectives
-------------------------------------------
These apis are called by user code and expected to work both in eager execution and compilation,
but there are significant differences to how the two modes are implemented underneath.
Eager execution is 'optimized' using a tensor subclass that schedules the synchronization (via wait_tensor() op)
just before the tensor is first used. Compiled tracing currently relies on the compiler to perform this optimization,
and cannot yet correctly trace the AsyncTensor wrapper class. In the future, these paths may be unified
if sufficient subclass support is added in dynamo.
Example: all_reduce is an entrypoint API, and other collectives follow a similar pattern.
Here's how it works under torch.compile/dynamo:
all_reduce(...)
|--> _expand_group(...) - desugars processgroup into canonical/traceable format
|--> c10d_functional.all_reduce(...) - dynamo captures this op call, doesn't trace deeper
|--> _maybe_wrap_tensor(...) - wait_tensor() op is immediately called, no AsyncTensor subclass needed
And under eager execution:
all_reduce(...)
|--> _expand_group(...) - same as above, but less critical for eager
|--> c10d_functional.all_reduce(...) - dispatches to real kernel OR records op in trace
|--> _maybe_wrap_tensor(...) - AsyncTensor wrapper applied to returned tensor,
which issues wait_tensor() at the time of first use
"""
def wait_tensor(tensor):
"""
Wait on a tensor returned by the collectives ops.
Waiting follows device semantics, which means blocking on CPU and synchronizing streams on CUDA.
"""
return torch.ops.c10d_functional.wait_tensor(tensor) # type: ignore[attr-defined]
def all_reduce(self: torch.Tensor, reduceOp: str, group: RANK_TYPES, tag: str = ""):
"""
Reduces the tensor data across all machines in such a way that all get
the final result.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
tag, rankset, group_size = _expand_group(group, tag)
tensor = torch.ops.c10d_functional.all_reduce(self, reduceOp, tag, rankset, group_size) # type: ignore[attr-defined]
return _maybe_wrap_tensor(tensor)
def all_gather_tensor(
self: torch.Tensor,
gather_dim: int,
group: RANK_TYPES,
tag: str = "",
):
"""
Gather tensor data across from all machines and concatenate over ``gather_dim``.
Note that it currently only supports gather_dim = 0.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
assert self.is_contiguous()
tag, rankset, group_size = _expand_group(group, tag)
tensor = torch.ops.c10d_functional.all_gather_into_tensor(self, tag, rankset, group_size) # type: ignore[attr-defined]
res = _maybe_wrap_tensor(tensor)
# TODO this should be done inside AsyncCollectiveTensor to delay the wait() call
if gather_dim != 0:
res = torch.cat(torch.chunk(res, group_size, dim=0), dim=gather_dim)
return res
def reduce_scatter_tensor(
self: torch.Tensor,
reduceOp: str,
scatter_dim: int,
group: RANK_TYPES,
tag: str = "",
):
"""
Reduces the tensor data across all machines in such a way that all get
the final result, then scatter the results to corresponding ranks.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
tag, rankset, group_size = _expand_group(group, tag)
assert (
self.size(scatter_dim) % group_size == 0
), f"input dimension 0 ({self.size(0)} must be a multiple of group_size {group_size}"
if scatter_dim != 0:
tensor_list = torch.chunk(self, group_size, dim=scatter_dim)
self = torch.cat(tensor_list)
tensor = torch.ops.c10d_functional.reduce_scatter_tensor(self, reduceOp, tag, rankset, group_size) # type: ignore[attr-defined]
res = _maybe_wrap_tensor(tensor)
return res
def all_reduce_coalesced(self: List[torch.Tensor], reduceOp: str, group: RANK_TYPES, tag: str = "") -> List[torch.Tensor]:
"""
Reduces a list of tensors across all machines in such a way that all get
the final result.
The all tensors in the input list are left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
tag, rankset, group_size = _expand_group(group, tag)
tensor_list = torch.ops.c10d_functional.all_reduce_coalesced(self, reduceOp, tag, rankset, group_size) # type: ignore[attr-defined]
return list(map(_maybe_wrap_tensor, tensor_list))
def all_gather_into_tensor_coalesced(self: List[torch.Tensor], group: RANK_TYPES, tag: str = "") -> List[torch.Tensor]:
"""
Gather a list of tensors across from all machines.
Note that it currently only supports gather_dim = 0.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
tag, rankset, group_size = _expand_group(group, tag)
tensor_list = torch.ops.c10d_functional.all_gather_into_tensor_coalesced(self, tag, rankset, group_size) # type: ignore[attr-defined]
return list(map(_maybe_wrap_tensor, tensor_list))
def reduce_scatter_tensor_coalesced(
inputs: List[torch.Tensor],
reduceOp: str,
scatter_dim: List[int],
group: RANK_TYPES,
tag: str = "",
) -> List[torch.Tensor]:
"""
Reduces a list of tensors across all machines in such a way that all get
the final result, then scatter the results to corresponding ranks.
The input tensors are left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
tag, rankset, group_size = _expand_group(group, tag)
assert len(scatter_dim) == len(inputs)
for idx, (dim, tensor) in enumerate(zip(scatter_dim, inputs)):
assert (
tensor.size(dim) % group_size == 0
), f"input dimension {dim} ({tensor.size(dim)} must be a multiple of group_size {group_size} for tensor at index {idx}"
if dim != 0:
tensor_list = torch.chunk(tensor, group_size, dim=dim)
inputs[idx] = torch.cat(tensor_list)
tensor_list = torch.ops.c10d_functional.reduce_scatter_tensor_coalesced(inputs, reduceOp, tag, rankset, group_size) # type: ignore[attr-defined]
return list(map(_maybe_wrap_tensor, tensor_list))
# This is a bit unsafe: it checks if the first argument in the schema reports as a non-mutable alias.
# Today, this maps 1:1 with "aten ops that are views".
def _is_view_op(tgt):
assert isinstance(tgt, torch._ops.OpOverload)
schema = tgt._schema
if len(schema.arguments) > 0:
first_arg = schema.arguments[0]
# check if op is a view
return first_arg.alias_info is not None and not first_arg.alias_info.is_write
class AsyncCollectiveTensor(torch.Tensor):
r"""
A Tensor wrapper subclass that is used to trigger a call to wait
prior to first use of the underlying tensor.
Use it inside functional collective pytorch wrappers like the following:
def functional_collective(self, group, tag):
tag, rankset, group_size = _expand_group(group, tag)
tensor = torch.ops.c10d_functional.{collective}(self, tag, rankset, group_size)
return _maybe_wrap_tensor(tensor)
"""
elem: torch.Tensor
__slots__ = ['elem']
__torch_function__ = torch._C._disabled_torch_function_impl
@staticmethod
def __new__(cls, elem: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
strides=elem.stride(), storage_offset=elem.storage_offset(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=False
)
r.elem = elem
return r
def __tensor_flatten__(self):
return ["elem"], None
def tolist(self):
wait_tensor(self.elem)
return self.elem.tolist()
@staticmethod
def __tensor_unflatten__(inner_tensors, meta):
assert meta is None
elem = inner_tensors["elem"]
return AsyncCollectiveTensor(elem)
def __repr__(self):
wait_tensor(self.elem)
return f"AsyncCollectiveTensor({self.elem})"
def trigger_wait(self):
wait_tensor(self.elem)
return self
def _get_acs_underlying_tensor(self):
"""This method enables _functional_collectives_impl to test if a tensor is an ACS"""
return self.elem
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
is_view_op = _is_view_op(func)
def unwrap(e: AsyncCollectiveTensor):
# wait_tensor is idepotent and will do stream sync only once
if not is_view_op:
wait_tensor(e.elem)
return e.elem
def wrap(e: torch.Tensor):
# wait_tensor is idepotent and will do stream sync only once
assert not isinstance(e, AsyncCollectiveTensor)
res = AsyncCollectiveTensor(e)
_register_tensor_wrapper(res)
return res
unwrapped_args = tree_map_only(AsyncCollectiveTensor, unwrap, args)
unwrapped_kwargs = tree_map_only(AsyncCollectiveTensor, unwrap, kwargs)
# we don't wrap the result as it doesn't need to be waited on.
out = func(*unwrapped_args, **unwrapped_kwargs)
# View ops dont require a sync, so we should re-wrap the outputs.
if is_view_op:
out = tree_map_only(torch.Tensor, wrap, out)
return out
"""
Utils and infrastructure for tracing support
"""
def _expand_group(group: RANK_TYPES, tag: str = "") -> Tuple[str, List[int], int]:
"""
_expand_group desugars the different RANK_TYPES types into a canonical format that is traceable.
By having this be part of the explicit eager codepath, we avoid having to specialize behavior inside
torchdynamo and can still interoperate with processgroup objects or other untraceable forms.
"""
# Cannot import on the top level to avoid circular imports
import torch.distributed._tensor as dt
# had to define this hack _inside_ expand_group to avoid
# graph_break [('torch.* op returned non-Tensor int
# caused by 'cast_*` functions being treated as 'torch.*' ops (iiuc)
if TYPE_CHECKING:
def cast_listlistint(x):
return cast(List[List[int]], x)
def cast_listint(x):
return cast(List[int], x)
else:
# fake cast op for use at runtime since dynamo doesn't support real cast
# also, dynamo didn't like encountering 'typing' objects ()
# NotImplementedError: argument of type: <class 'typing._GenericAlias'>
def cast_listlistint(x):
return x
def cast_listint(x):
return x
rankset: List[int]
if isinstance(group, list):
if isinstance(group[0], list):
nested_list = cast_listlistint(group)
rankset = []
group_size = -1
for rs in nested_list:
rankset.extend(rs)
if group_size != -1 and group_size != len(rs):
raise ValueError(
f"group sizes must be identical found {group_size} and {len(rs)}"
)
group_size = len(rs)
else:
rankset = cast_listint(group)
group_size = len(rankset)
elif isinstance(group, dist.ProcessGroup):
rankset = dist.get_process_group_ranks(group)
group_size = len(rankset)
tag = tag or c10d._get_group_tag(group)
elif isinstance(group, dt.DeviceMesh):
assert group.ndim == 1, "Only 1D mesh is supported, pass in (DeviceMesh, int) together if mesh > 1D"
# TODO: it should run collective in the whole mesh instead of dim 0
tag, rankset = group._dim_group_infos[0]
group_size = len(rankset)
elif isinstance(group, tuple):
if len(group) == 2 and isinstance(group[0], dt.DeviceMesh) and isinstance(group[1], int):
dmesh = group[0]
dim = group[1]
tag, rankset = dmesh._dim_group_infos[dim]
group_size = len(rankset)
else:
raise ValueError("Invalid tuple for group must be (DeviceMesh, int)")
else:
raise ValueError("Invalid type for group, must be one of List, Processgroup, DeviceMesh or (DeviceMesh, int).")
return (tag, rankset, group_size)
def _are_we_tracing() -> bool:
if is_torchdynamo_compiling():
return True
mode = get_innermost_proxy_mode()
if mode is None:
return False
return mode.tracer is not None
def _maybe_wrap_tensor(self) -> torch.Tensor:
if _are_we_tracing():
return wait_tensor(self)
res = AsyncCollectiveTensor(self)
_register_tensor_wrapper(res)
return cast(torch.Tensor, res)
def _all_gather_into_tensor_coalesced_meta(self, tag, rankset, group_size):
def mk_out_tensor(shard):
out_size = list(shard.size())
out_size[0] *= group_size
out_tensor = shard.new_empty(out_size)
return out_tensor
return [mk_out_tensor(t) for t in self]
# We now register meta kernels to deal with tracing
def _all_reduce_meta(self, *args):
return torch.empty_like(self)
def _wait_tensor_meta(self, *args):
return torch.empty_like(self)
def _all_gather_into_tensor_meta(shard, tag, rankset, group_size):
out_size = list(shard.size())
out_size[0] *= group_size
return shard.new_empty(out_size)
def _reduce_scatter_tensor_meta(input, reduce_op, tag, rankset, group_size):
out_size = list(input.size())
out_size[0] //= group_size
return input.new_empty(out_size)
def _all_reduce_coalesced_meta(self, reduceOp, tag, rankset, group_size):
return [torch.empty_like(t) for t in self]
def _reduce_scatter_tensor_coalesced_meta(inputs, reduceOp, tag, rankset, group_size):
def mk_out_tensor(input):
out_size = list(input.size())
out_size[0] //= group_size
out_tensor = input.new_empty(out_size)
return out_tensor
return [mk_out_tensor(t) for t in inputs]
def _register_ops():
ops_defs = [
"all_reduce(Tensor self, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor",
"all_reduce_coalesced(Tensor[] self, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor[]",
"wait_tensor(Tensor self) -> Tensor",
"all_gather_into_tensor(Tensor shard, str tag, int[] ranks, int group_size) -> Tensor",
"all_gather_into_tensor_coalesced(Tensor[] input, str tag, int[] ranks, int group_size) -> Tensor[]",
"reduce_scatter_tensor(Tensor input, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor",
"reduce_scatter_tensor_coalesced(Tensor[] inputs, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor[]",
]
my_module = sys.modules[__name__]
for op_def in ops_defs:
op_name = op_def[0:op_def.index('(')]
backend_impl = getattr(fun_col_impl, f"_{op_name}")
meta_impl = getattr(my_module, f"_{op_name}_meta")
c10_lib.define(op_def)
c10_lib_impl.impl(op_name, backend_impl, "CompositeExplicitAutograd")
c10_lib_impl.impl(op_name, meta_impl, "Meta")
if not torch._running_with_deploy():
# Library MUST be defined at module scope or it doesn't work
# Creating a "DEF" Library always crashes torch::deploy so we create our Library instances here
# guarded against running inside it
c10_lib = torch.library.Library("c10d_functional", "DEF")
c10_lib_impl = torch.library.Library("c10d_functional", "IMPL")
_register_ops()
else:
warnings.warn("PyTorch Distributed functional collectives do not work with torch::deploy.")
"""
Dynamo Remappings allow seamless translation from non-functional collectives of supportable form into
functional collective calls followed by inplace copy ops, allowing them to be traced into a functional graph.
We implement this by writing a decomposition and teaching dynamo how to associate it to a corresponding op via
the mapping dict below.
These schemas intentionally match torch.distributed.distributed_c10d.* ops that we are trying to remap from
"""
def all_gather_tensor_inplace(
output: torch.Tensor,
input: torch.Tensor,
group, # TODO add a type,
async_op: bool = False,
tag: str = "",
gather_dim: int = 0
):
assert not async_op, "Can't remap async version of inplace op to functional collective"
return output.copy_(all_gather_tensor(input, gather_dim, group, tag))
def reduce_scatter_tensor_inplace(
output: torch.Tensor,
input: torch.Tensor,
op: str = "sum", # TODO type is actually c10d ReduceOp. is this ok?
group=None, # TODO add a type
async_op: bool = False,
scatter_dim: int = 0,
tag: str = "",
):
assert not async_op, "Can't remap async version of inplace op to functional collective"
return output.copy_(reduce_scatter_tensor(input, op, scatter_dim, group, tag))
from torch.distributed.distributed_c10d import (
all_gather_into_tensor as legacy_allgather,
reduce_scatter_tensor as legacy_reducescatter,
)
# This dict should contain sets of functions that dynamo is allowed to remap.
# Functions in this set should accept the same args/kwargs 1:1 as their mapping.
traceable_collective_remaps = {
legacy_allgather: all_gather_tensor_inplace,
legacy_reducescatter: reduce_scatter_tensor_inplace,
}