From 3bd1fe07a03fd71ee36bc3295cad59ab0eeb2d11 Mon Sep 17 00:00:00 2001 From: Haesun Park Date: Sun, 6 Jun 2021 12:24:18 +0900 Subject: [PATCH] =?UTF-8?q?=ED=8A=B9=EC=84=B1=20=EC=9D=B4=EB=A6=84=20?= =?UTF-8?q?=EB=B2=88=EC=97=AD?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ml_editor/explanation_generation.py | 64 ++++++++++++++--------------- 1 file changed, 32 insertions(+), 32 deletions(-) diff --git a/ml_editor/explanation_generation.py b/ml_editor/explanation_generation.py index 582cfba..b27de37 100644 --- a/ml_editor/explanation_generation.py +++ b/ml_editor/explanation_generation.py @@ -6,36 +6,36 @@ from ml_editor.data_processing import get_split_by_author FEATURE_DISPLAY_NAMES = { - "num_questions": "frequency of question marks", - "num_periods": "frequency of periods", - "num_commas": "frequency of commas", - "num_exclam": "frequency of exclamation points", - "num_quotes": "frequency of quotes", - "num_colon": "frequency of colons", - "num_semicolon": "frequency of semicolons", - "num_stops": "frequency of stop words", - "num_words": "word count", - "num_chars": "word count", - "num_diff_words": "vocabulary diversity", - "avg_word_len": "vocabulary complexity", - "polarity": "positivity of emotional sentiment", - "ADJ": "frequency of adjectives", - "ADP": "frequency of adpositions", - "ADV": "frequency of adverbs", - "AUX": "frequency of auxiliary verbs", - "CONJ": "frequency of coordinating conjunctions", - "DET": "frequency of determiners", - "INTJ": "frequency of interjections", - "NOUN": "frequency of nouns", - "NUM": "frequency of numerals", - "PART": "frequency of particles", - "PRON": "frequency of pronouns", - "PROPN": "frequency of proper nouns", - "PUNCT": "frequency of punctuation", - "SCONJ": "frequency of subordinating conjunctions", - "SYM": "frequency of symbols", - "VERB": "frequency of verbs", - "X": "frequency of other words", + "num_questions": "물음표 빈도", + "num_periods": "마침표 빈도", + "num_commas": "쉼표 빈도", + "num_exclam": "느낌표 빈도", + "num_quotes": "따옴표 빈도", + "num_colon": "콜론 빈도", + "num_semicolon": "세미콜론 빈도", + "num_stops": "불용어 빈도", + "num_words": "단어 개수", + "num_chars": "문자 개수", + "num_diff_words": "어휘 다양성", + "avg_word_len": "평균 단어 길이", + "polarity": "긍정적인 감성", + "ADJ": "형용사 빈도", + "ADP": "전치사 빈도", + "ADV": "부사 빈도", + "AUX": "조동사 빈도", + "CONJ": "접속사 빈도", + "DET": "한정사 빈도", + "INTJ": "감탄사 빈도", + "NOUN": "명사 빈도", + "NUM": "숫자 빈도", + "PART": "불변화사 빈도", + "PRON": "대명사 빈도", + "PROPN": "고유 명사 빈도", + "PUNCT": "구두점 빈도", + "SCONJ": "종속 접속사 빈도", + "SYM": "기호 빈도", + "VERB": "동사 빈도", + "X": "다른 단어의 빈도", } POS_NAMES = { @@ -140,8 +140,8 @@ def parse_explanations(exp_list): for feat_bound, impact in exp_list: conditions = feat_bound.split(" ") - # We ignore doubly bounded conditions , e.g. 1 <= a < 3 because - # they are harder to formulate as a recommendation + # 추천으로 표현하기 힘들기 때문에 + # 1 <= a < 3 와 같은 이중 경계 조건은 무시합니다 if len(conditions) == 3: feat_name, order, threshold = conditions