-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrack.py
372 lines (316 loc) · 17.3 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# limit the number of cpus used by high performance libraries
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
sys.path.insert(0, './yolov5')
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.utils.datasets import LoadImages, LoadStreams
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords, check_imshow, xyxy2xywh
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
import math
import pymongo
import datetime
##############################################################################
# connect with mongoDB
client = pymongo.MongoClient("mongodb+srv://dbuser:[email protected]/records?retryWrites=true&w=majority")
db = client.records
collection = db.records
# Return true if line segments AB and CD intersect
def intersect(A, B, C, D):
return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D)
# Return true if ABC is counterclockwise
def ccw(A, B, C):
return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])
##############################################################################
def detect(opt):
out, source, yolo_weights, deep_sort_weights, show_vid, save_vid, save_txt, imgsz, evaluate, half = \
opt.output, opt.source, opt.yolo_weights, opt.deep_sort_weights, opt.show_vid, opt.save_vid, \
opt.save_txt, opt.img_size, opt.evaluate, opt.half
webcam = source == '0' or source.startswith(
'rtsp') or source.startswith('http') or source.endswith('.txt')
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
attempt_download(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch')
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Initialize
device = select_device(opt.device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
# its own .txt file. Hence, in that case, the output folder is not restored
if not evaluate:
if os.path.exists(out):
pass
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Load model
model = attempt_load(yolo_weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16
# Set Dataloader
vid_path, vid_writer = None, None
# Check if environment supports image displays
if show_vid:
show_vid = check_imshow()
if webcam:
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
save_path = str(Path(out))
# extract what is in between the last '/' and last '.'
txt_file_name = source.split('/')[-1].split('.')[0]
txt_path = str(Path(out)) + '/' + txt_file_name + '.txt'
# initialize line, counter, memory ############################################
lineblue = [(0, 100), (1000, 100)]
linered = [(0, 250), (1000, 250)]
memory = {}
previous1 = {}
previous2 = {}
previous3 = {}
expectedin = []
expectedout = []
min_count_in = 0
max_count_in = 0
all_count_in = 0
total_count_in = 0
min_count_out = 0
max_count_out = 0
all_count_out = 0
total_count_out = 0
certainty = 0
######################################################################
for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_sync()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_sync()
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
s += '%gx%g ' % img.shape[2:] # print string
save_path = str(Path(out) / Path(p).name)
annotator = Annotator(im0, line_width=2, pil=not ascii)
# draw line ############################################################
cv2.line(im0,lineblue[0],lineblue[1],(255,0,0),2)
cv2.line(im0,linered[0],linered[1],(0,0,255),2)
print(expectedin)
print(expectedout)
########################################################################
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to deepsort
outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
# initialize ###########################################################
index_id = []
boxes = []
previous3 = previous2
previous2 = previous1
previous1 = memory.copy()
memory = {}
########################################################################
# draw boxes for visualization
if len(outputs) > 0:
for j, (output, conf) in enumerate(zip(outputs, confs)):
bboxes = output[0:4]
id = output[4]
cls = output[5]
c = int(cls) # integer class
label = f'{id} {names[c]} {conf:.2f}'
annotator.box_label(bboxes, label, color=colors(c, True))
# count in, out ###############################################
for output in outputs:
boxes.append([output[0],output[1],output[2],output[3]])
index_id.append(output[-2])
memory[index_id[-1]] = boxes[-1]
i = int(0)
for box in boxes:
# extract the bounding box coordinates
(x, y) = (int(box[0]), int(box[1]))
(w, h) = (int(box[2]), int(box[3]))
# get the middle coordinate of the box
p0 = (int(x + (w-x)/2), int(y + (h-y)/2))
# previous1
if index_id[i] in previous1:
previous_box1 = previous1[index_id[i]]
# extract the previous bounding box coordinates
(x1, y1) = (int(previous_box1[0]), int(previous_box1[1]))
(w1, h1) = (int(previous_box1[2]), int(previous_box1[3]))
p1 = (int(x1 + (w1-x1)/2), int(y1 + (h1-y1)/2))
# track line
cv2.line(im0,p0,p1,(255,0,255),1)
# previous2
if index_id[i] in previous2:
previous_box2 = previous2[index_id[i]]
(x2, y2) = (int(previous_box2[0]), int(previous_box2[1]))
(w2, h2) = (int(previous_box2[2]), int(previous_box2[3]))
p2 = (int(x2 + (w2-x2)/2), int(y2 + (h2-y2)/2))
cv2.line(im0,p1,p2,(255,0,0),1)
# previous3
if index_id[i] in previous3:
previous_box3 = previous3[index_id[i]]
(x3, y3) = (int(previous_box3[0]), int(previous_box3[1]))
(w3, h3) = (int(previous_box3[2]), int(previous_box3[3]))
p3 = (int(x3 + (w3-x3)/2), int(y3 + (h3-y3)/2))
cv2.line(im0,p2,p3,(0,255,0),1)
# count if p0-p1 and blue line are intersect
if intersect(p0, p1, lineblue[0], lineblue[1]):
# if p0's y coordinate is higher than p1's y coordinate
if p0[1] > p1[1]:
all_count_in += 1
expectedin.append((index_id[i], p0))
else:
all_count_out += 1
resultidx = [index for (index, tuple) in enumerate(expectedout) if tuple[0] == index_id[i]]
if resultidx:
expectedout.pop(resultidx[0])
min_count_out += 1
# count if p0-p1 and red line are intersect
if intersect(p0, p1, linered[0], linered[1]):
# if p0's y coordinate is higher than p1's y coordinate
if p0[1] > p1[1]:
all_count_in += 1
resultidx = [index for (index, tuple) in enumerate(expectedin) if tuple[0] == index_id[i]]
if resultidx:
expectedin.pop(resultidx[0])
min_count_in += 1
else:
all_count_out += 1
expectedout.append((index_id[i], p0))
i += 1
#################################################################
if save_txt:
# to MOT format
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2] - output[0]
bbox_h = output[3] - output[1]
# Write MOT compliant results to file
with open(txt_path, 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx, id, bbox_left,
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format
else:
deepsort.increment_ages()
# print in, out, total ###################################################
max_count_in = all_count_in - min_count_in
max_count_out = all_count_out - min_count_out
total_count_in = (min_count_in + max_count_in)/2
total_count_out = (min_count_out + max_count_out)/2
if total_count_in + total_count_out != 0:
certainty = (min_count_in + min_count_out)/(total_count_in + total_count_out) * 100
cv2.putText(im0, 'In : {}'.format(total_count_in),(40,330),cv2.FONT_HERSHEY_COMPLEX,1.0,(255,255,255),2)
cv2.putText(im0, 'Out : {}'.format(total_count_out), (40,360),cv2.FONT_HERSHEY_COMPLEX,1.0,(255,255,255),2)
cv2.putText(im0, 'Round In : {}'.format(math.ceil(total_count_in)),(40,390),cv2.FONT_HERSHEY_COMPLEX,1.0,(0,0,0),2)
cv2.putText(im0, 'Round out : {}'.format(math.ceil(total_count_out)),(40,420),cv2.FONT_HERSHEY_COMPLEX,1.0,(0,0,0),2)
cv2.putText(im0, 'Certainty : {}%'.format(certainty),(40,450),cv2.FONT_HERSHEY_COMPLEX,1.0,(50,50,50),2)
collection.insert_one({
"in_count" : math.ceil(total_count_in),
"out_count" : math.ceil(total_count_out),
"total_count": math.ceil(total_count_in) - math.ceil(total_count_out),
"time" : datetime.datetime.now()
})
##########################################################################
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
im0 = annotator.result()
if show_vid:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_vid:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_vid:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--yolo_weights', nargs='+', type=str, default='yolov5/weights/yolov5l.pt', help='model.pt path(s)')
parser.add_argument('--deep_sort_weights', type=str, default='deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7', help='ckpt.t7 path')
# file/folder, 0 for webcam
parser.add_argument('--source', type=str, default='0', help='source')
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 16 17')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--evaluate', action='store_true', help='augmented inference')
parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
args = parser.parse_args()
args.img_size = check_img_size(args.img_size)
with torch.no_grad():
detect(args)