-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathekfPrediction.m
45 lines (38 loc) · 1.39 KB
/
ekfPrediction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function [X, P] = ekfPrediction(xk, Pk, uk, U, Q0, dt)
%% State prediction based on EKF filter and motion model
% Inputs: xk - state vector
% Pk - state covariance
% uk - odometer reading [velocity; yaw rate]
% U - covariance matrix for odometer reading
% Q - covariance matrix for the platform process noise
% dt - time interval
%
% Outputs: X - mean of the predicted state
% P - covariance of the predicted state
X = xk; % Initialize the predicted state
N = length(xk); % Calculate the size of the state
theta = xk(3); % Platform heading
v = uk(1); % Velocity
psi = uk(2); % Yaw rate
Q = zeros(N, N); % Set the process noise for the state
Q(1:3, 1:3) = Q0;
A = sin(theta + dt*psi/2); % Calculate the angular updates
B = cos(theta + dt*psi/2);
% Apply the platform motion model to predict platform pose
X(1) = xk(1) + v * dt * B;
X(2) = xk(2) + v * dt * A;
X(3) = wrapTo2Pi(theta + psi*dt);
% Calculate Jacobian w.r.t. state vector
Fx = eye(N);
Fx(1,3) = -dt * v * A;
Fx(2,3) = dt * v * B;
% Caclulate Jacobin w.r.t the control input
Fu = zeros(N, 2);
Fu(1,1) = dt * B;
Fu(1,2) = -(dt^2)/2 * v * A;
Fu(2,1) = dt * A;
Fu(2,2) = (dt^2)/2 * v * B;
Fu(3,2) = 1;
% Predicted update of the state covariance
P = Fx * Pk * Fx' + Fu * U * Fu' + Q;
end