-
Notifications
You must be signed in to change notification settings - Fork 343
/
render_data.py
executable file
·290 lines (234 loc) · 10 KB
/
render_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#from data.config import raw_dataset, render_dataset, archive_dataset, model_list, zip_path
from lib.renderer.camera import Camera
import numpy as np
from lib.renderer.mesh import load_obj_mesh, compute_tangent, compute_normal, load_obj_mesh_mtl
from lib.renderer.camera import Camera
import os
import cv2
import time
import math
import random
import pyexr
import argparse
from tqdm import tqdm
def make_rotate(rx, ry, rz):
sinX = np.sin(rx)
sinY = np.sin(ry)
sinZ = np.sin(rz)
cosX = np.cos(rx)
cosY = np.cos(ry)
cosZ = np.cos(rz)
Rx = np.zeros((3,3))
Rx[0, 0] = 1.0
Rx[1, 1] = cosX
Rx[1, 2] = -sinX
Rx[2, 1] = sinX
Rx[2, 2] = cosX
Ry = np.zeros((3,3))
Ry[0, 0] = cosY
Ry[0, 2] = sinY
Ry[1, 1] = 1.0
Ry[2, 0] = -sinY
Ry[2, 2] = cosY
Rz = np.zeros((3,3))
Rz[0, 0] = cosZ
Rz[0, 1] = -sinZ
Rz[1, 0] = sinZ
Rz[1, 1] = cosZ
Rz[2, 2] = 1.0
R = np.matmul(np.matmul(Rz,Ry),Rx)
return R
def rotateSH(SH, R):
SHn = SH
# 1st order
SHn[1] = R[1,1]*SH[1] - R[1,2]*SH[2] + R[1,0]*SH[3]
SHn[2] = -R[2,1]*SH[1] + R[2,2]*SH[2] - R[2,0]*SH[3]
SHn[3] = R[0,1]*SH[1] - R[0,2]*SH[2] + R[0,0]*SH[3]
# 2nd order
SHn[4:,0] = rotateBand2(SH[4:,0],R)
SHn[4:,1] = rotateBand2(SH[4:,1],R)
SHn[4:,2] = rotateBand2(SH[4:,2],R)
return SHn
def rotateBand2(x, R):
s_c3 = 0.94617469575
s_c4 = -0.31539156525
s_c5 = 0.54627421529
s_c_scale = 1.0/0.91529123286551084
s_c_scale_inv = 0.91529123286551084
s_rc2 = 1.5853309190550713*s_c_scale
s_c4_div_c3 = s_c4/s_c3
s_c4_div_c3_x2 = (s_c4/s_c3)*2.0
s_scale_dst2 = s_c3 * s_c_scale_inv
s_scale_dst4 = s_c5 * s_c_scale_inv
sh0 = x[3] + x[4] + x[4] - x[1]
sh1 = x[0] + s_rc2*x[2] + x[3] + x[4]
sh2 = x[0]
sh3 = -x[3]
sh4 = -x[1]
r2x = R[0][0] + R[0][1]
r2y = R[1][0] + R[1][1]
r2z = R[2][0] + R[2][1]
r3x = R[0][0] + R[0][2]
r3y = R[1][0] + R[1][2]
r3z = R[2][0] + R[2][2]
r4x = R[0][1] + R[0][2]
r4y = R[1][1] + R[1][2]
r4z = R[2][1] + R[2][2]
sh0_x = sh0 * R[0][0]
sh0_y = sh0 * R[1][0]
d0 = sh0_x * R[1][0]
d1 = sh0_y * R[2][0]
d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3)
d3 = sh0_x * R[2][0]
d4 = sh0_x * R[0][0] - sh0_y * R[1][0]
sh1_x = sh1 * R[0][2]
sh1_y = sh1 * R[1][2]
d0 += sh1_x * R[1][2]
d1 += sh1_y * R[2][2]
d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3)
d3 += sh1_x * R[2][2]
d4 += sh1_x * R[0][2] - sh1_y * R[1][2]
sh2_x = sh2 * r2x
sh2_y = sh2 * r2y
d0 += sh2_x * r2y
d1 += sh2_y * r2z
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2)
d3 += sh2_x * r2z
d4 += sh2_x * r2x - sh2_y * r2y
sh3_x = sh3 * r3x
sh3_y = sh3 * r3y
d0 += sh3_x * r3y
d1 += sh3_y * r3z
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2)
d3 += sh3_x * r3z
d4 += sh3_x * r3x - sh3_y * r3y
sh4_x = sh4 * r4x
sh4_y = sh4 * r4y
d0 += sh4_x * r4y
d1 += sh4_y * r4z
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2)
d3 += sh4_x * r4z
d4 += sh4_x * r4x - sh4_y * r4y
dst = x
dst[0] = d0
dst[1] = -d1
dst[2] = d2 * s_scale_dst2
dst[3] = -d3
dst[4] = d4 * s_scale_dst4
return dst
def render_prt_ortho(out_path, folder_name, subject_name, shs, rndr, rndr_uv, im_size, angl_step=4, n_light=1, pitch=[0]):
cam = Camera(width=im_size, height=im_size)
cam.ortho_ratio = 0.4 * (512 / im_size)
cam.near = -100
cam.far = 100
cam.sanity_check()
# set path for obj, prt
mesh_file = os.path.join(folder_name, subject_name + '_100k.obj')
if not os.path.exists(mesh_file):
print('ERROR: obj file does not exist!!', mesh_file)
return
prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt')
if not os.path.exists(prt_file):
print('ERROR: prt file does not exist!!!', prt_file)
return
face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy')
if not os.path.exists(face_prt_file):
print('ERROR: face prt file does not exist!!!', prt_file)
return
text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg')
if not os.path.exists(text_file):
print('ERROR: dif file does not exist!!', text_file)
return
texture_image = cv2.imread(text_file)
texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB)
vertices, faces, normals, faces_normals, textures, face_textures = load_obj_mesh(mesh_file, with_normal=True, with_texture=True)
vmin = vertices.min(0)
vmax = vertices.max(0)
up_axis = 1 if (vmax-vmin).argmax() == 1 else 2
vmed = np.median(vertices, 0)
vmed[up_axis] = 0.5*(vmax[up_axis]+vmin[up_axis])
y_scale = 180/(vmax[up_axis] - vmin[up_axis])
rndr.set_norm_mat(y_scale, vmed)
rndr_uv.set_norm_mat(y_scale, vmed)
tan, bitan = compute_tangent(vertices, faces, normals, textures, face_textures)
prt = np.loadtxt(prt_file)
face_prt = np.load(face_prt_file)
rndr.set_mesh(vertices, faces, normals, faces_normals, textures, face_textures, prt, face_prt, tan, bitan)
rndr.set_albedo(texture_image)
rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures, face_textures, prt, face_prt, tan, bitan)
rndr_uv.set_albedo(texture_image)
os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'PARAM', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'RENDER', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'MASK', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_POS', subject_name),exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name),exist_ok=True)
if not os.path.exists(os.path.join(out_path, 'val.txt')):
f = open(os.path.join(out_path, 'val.txt'), 'w')
f.close()
# copy obj file
cmd = 'cp %s %s' % (mesh_file, os.path.join(out_path, 'GEO', 'OBJ', subject_name))
print(cmd)
os.system(cmd)
for p in pitch:
for y in tqdm(range(0, 360, angl_step)):
R = np.matmul(make_rotate(math.radians(p), 0, 0), make_rotate(0, math.radians(y), 0))
if up_axis == 2:
R = np.matmul(R, make_rotate(math.radians(90),0,0))
rndr.rot_matrix = R
rndr_uv.rot_matrix = R
rndr.set_camera(cam)
rndr_uv.set_camera(cam)
for j in range(n_light):
sh_id = random.randint(0,shs.shape[0]-1)
sh = shs[sh_id]
sh_angle = 0.2*np.pi*(random.random()-0.5)
sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T)
dic = {'sh': sh, 'ortho_ratio': cam.ortho_ratio, 'scale': y_scale, 'center': vmed, 'R': R}
rndr.set_sh(sh)
rndr.analytic = False
rndr.use_inverse_depth = False
rndr.display()
out_all_f = rndr.get_color(0)
out_mask = out_all_f[:,:,3]
out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR)
np.save(os.path.join(out_path, 'PARAM', subject_name, '%d_%d_%02d.npy'%(y,p,j)),dic)
cv2.imwrite(os.path.join(out_path, 'RENDER', subject_name, '%d_%d_%02d.jpg'%(y,p,j)),255.0*out_all_f)
cv2.imwrite(os.path.join(out_path, 'MASK', subject_name, '%d_%d_%02d.png'%(y,p,j)),255.0*out_mask)
rndr_uv.set_sh(sh)
rndr_uv.analytic = False
rndr_uv.use_inverse_depth = False
rndr_uv.display()
uv_color = rndr_uv.get_color(0)
uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR)
cv2.imwrite(os.path.join(out_path, 'UV_RENDER', subject_name, '%d_%d_%02d.jpg'%(y,p,j)),255.0*uv_color)
if y == 0 and j == 0 and p == pitch[0]:
uv_pos = rndr_uv.get_color(1)
uv_mask = uv_pos[:,:,3]
cv2.imwrite(os.path.join(out_path, 'UV_MASK', subject_name, '00.png'),255.0*uv_mask)
data = {'default': uv_pos[:,:,:3]} # default is a reserved name
pyexr.write(os.path.join(out_path, 'UV_POS', subject_name, '00.exr'), data)
uv_nml = rndr_uv.get_color(2)
uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR)
cv2.imwrite(os.path.join(out_path, 'UV_NORMAL', subject_name, '00.png'),255.0*uv_nml)
if __name__ == '__main__':
shs = np.load('./env_sh.npy')
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, default='/home/shunsuke/Downloads/rp_dennis_posed_004_OBJ')
parser.add_argument('-o', '--out_dir', type=str, default='/home/shunsuke/Documents/hf_human')
parser.add_argument('-m', '--ms_rate', type=int, default=1, help='higher ms rate results in less aliased output. MESA renderer only supports ms_rate=1.')
parser.add_argument('-e', '--egl', action='store_true', help='egl rendering option. use this when rendering with headless server with NVIDIA GPU')
parser.add_argument('-s', '--size', type=int, default=512, help='rendering image size')
args = parser.parse_args()
# NOTE: GL context has to be created before any other OpenGL function loads.
from lib.renderer.gl.init_gl import initialize_GL_context
initialize_GL_context(width=args.size, height=args.size, egl=args.egl)
from lib.renderer.gl.prt_render import PRTRender
rndr = PRTRender(width=args.size, height=args.size, ms_rate=args.ms_rate, egl=args.egl)
rndr_uv = PRTRender(width=args.size, height=args.size, uv_mode=True, egl=args.egl)
if args.input[-1] == '/':
args.input = args.input[:-1]
subject_name = args.input.split('/')[-1][:-4]
render_prt_ortho(args.out_dir, args.input, subject_name, shs, rndr, rndr_uv, args.size, 1, 1, pitch=[0])