-
Notifications
You must be signed in to change notification settings - Fork 343
/
sample_util.py
executable file
·47 lines (42 loc) · 1.85 KB
/
sample_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
def save_samples_truncted_prob(fname, points, prob):
'''
Save the visualization of sampling to a ply file.
Red points represent positive predictions.
Green points represent negative predictions.
:param fname: File name to save
:param points: [N, 3] array of points
:param prob: [N, 1] array of predictions in the range [0~1]
:return:
'''
r = (prob > 0.5).reshape([-1, 1]) * 255
g = (prob < 0.5).reshape([-1, 1]) * 255
b = np.zeros(r.shape)
to_save = np.concatenate([points, r, g, b], axis=-1)
return np.savetxt(fname,
to_save,
fmt='%.6f %.6f %.6f %d %d %d',
comments='',
header=(
'ply\nformat ascii 1.0\nelement vertex {:d}\nproperty float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\nend_header').format(
points.shape[0])
)
def save_samples_rgb(fname, points, rgb):
'''
Save the visualization of sampling to a ply file.
Red points represent positive predictions.
Green points represent negative predictions.
:param fname: File name to save
:param points: [N, 3] array of points
:param rgb: [N, 3] array of rgb values in the range [0~1]
:return:
'''
to_save = np.concatenate([points, rgb * 255], axis=-1)
return np.savetxt(fname,
to_save,
fmt='%.6f %.6f %.6f %d %d %d',
comments='',
header=(
'ply\nformat ascii 1.0\nelement vertex {:d}\nproperty float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\nend_header').format(
points.shape[0])
)