-
Notifications
You must be signed in to change notification settings - Fork 342
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
121 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,9 @@ | ||
# PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization | ||
|
||
[![report](https://img.shields.io/badge/arxiv-report-red)](https://arxiv.org/abs/1905.05172) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1GFSsqP2BWz4gtq0e-nki00ZHSirXwFyY) | ||
|
||
News: | ||
* \[2020/04/13\] Demo with Google Colab (incl. visualization) is available. Special thanks to [@nanopoteto](https://github.com/nanopoteto)!!! | ||
* \[2020/02/26\] License is updated to MIT license! Enjoy! | ||
|
||
This repository contains a pytorch implementation of "[PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization](https://arxiv.org/abs/1905.05172)". | ||
|
@@ -81,6 +84,10 @@ sh ./scripts/download_trained_model.sh | |
sh ./scripts/test.sh | ||
``` | ||
|
||
## Demo on Google Colab | ||
If you do not have a setup to run PIFu, we offer Google Colab version to give it a try, allowing you to run PIFu in the cloud, free of charge. Try our Colab demo using the following notebook: | ||
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1GFSsqP2BWz4gtq0e-nki00ZHSirXwFyY) | ||
|
||
## Data Generation (Linux Only) | ||
While we are unable to release the full training data due to the restriction of commertial scans, we provide rendering code using free models in [RenderPeople](https://renderpeople.com/free-3d-people/). | ||
This tutorial uses `rp_dennis_posed_004` model. Please download the model from [this link](https://renderpeople.com/sample/free/rp_dennis_posed_004_OBJ.zip) and unzip the content under a folder named `rp_dennis_posed_004_OBJ`. The same process can be applied to other RenderPeople data. | ||
|
@@ -149,4 +156,4 @@ Implict surface learning for sparse view human performance capture! | |
|
||
For commercial queries, please contact: | ||
|
||
Hao Li: [email protected] ccto: [email protected] Baker!! | ||
Hao Li: [email protected] ccto: [email protected] Baker!! |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import io | ||
import os | ||
import torch | ||
from skimage.io import imread | ||
import numpy as np | ||
import cv2 | ||
from tqdm import tqdm_notebook as tqdm | ||
import base64 | ||
from IPython.display import HTML | ||
|
||
# Util function for loading meshes | ||
from pytorch3d.io import load_objs_as_meshes | ||
|
||
from IPython.display import HTML | ||
from base64 import b64encode | ||
|
||
# Data structures and functions for rendering | ||
from pytorch3d.structures import Meshes, Textures | ||
from pytorch3d.renderer import ( | ||
look_at_view_transform, | ||
OpenGLOrthographicCameras, | ||
PointLights, | ||
DirectionalLights, | ||
Materials, | ||
RasterizationSettings, | ||
MeshRenderer, | ||
MeshRasterizer, | ||
TexturedSoftPhongShader, | ||
HardPhongShader | ||
) | ||
|
||
def set_renderer(): | ||
# Setup | ||
device = torch.device("cuda:0") | ||
torch.cuda.set_device(device) | ||
|
||
# Initialize an OpenGL perspective camera. | ||
R, T = look_at_view_transform(2.0, 0, 180) | ||
cameras = OpenGLOrthographicCameras(device=device, R=R, T=T) | ||
|
||
raster_settings = RasterizationSettings( | ||
image_size=512, | ||
blur_radius=0.0, | ||
faces_per_pixel=1, | ||
bin_size = None, | ||
max_faces_per_bin = None | ||
) | ||
|
||
lights = PointLights(device=device, location=((2.0, 2.0, 2.0),)) | ||
|
||
renderer = MeshRenderer( | ||
rasterizer=MeshRasterizer( | ||
cameras=cameras, | ||
raster_settings=raster_settings | ||
), | ||
shader=HardPhongShader( | ||
device=device, | ||
cameras=cameras, | ||
lights=lights | ||
) | ||
) | ||
return renderer | ||
|
||
def get_verts_rgb_colors(obj_path): | ||
rgb_colors = [] | ||
|
||
f = open(obj_path) | ||
lines = f.readlines() | ||
for line in lines: | ||
ls = line.split(' ') | ||
if len(ls) == 7: | ||
rgb_colors.append(ls[-3:]) | ||
|
||
return np.array(rgb_colors, dtype='float32')[None, :, :] | ||
|
||
def generate_video_from_obj(obj_path, video_path, renderer): | ||
# Setup | ||
device = torch.device("cuda:0") | ||
torch.cuda.set_device(device) | ||
|
||
# Load obj file | ||
verts_rgb_colors = get_verts_rgb_colors(obj_path) | ||
verts_rgb_colors = torch.from_numpy(verts_rgb_colors).to(device) | ||
textures = Textures(verts_rgb=verts_rgb_colors) | ||
wo_textures = Textures(verts_rgb=torch.ones_like(verts_rgb_colors)*0.75) | ||
|
||
# Load obj | ||
mesh = load_objs_as_meshes([obj_path], device=device) | ||
|
||
# Set mesh | ||
vers = mesh._verts_list | ||
faces = mesh._faces_list | ||
mesh_w_tex = Meshes(vers, faces, textures) | ||
mesh_wo_tex = Meshes(vers, faces, wo_textures) | ||
|
||
# create VideoWriter | ||
fourcc = cv2. VideoWriter_fourcc(*'MP4V') | ||
out = cv2.VideoWriter(video_path, fourcc, 20.0, (1024,512)) | ||
|
||
for i in tqdm(range(90)): | ||
R, T = look_at_view_transform(1.8, 0, i*4, device=device) | ||
images_w_tex = renderer(mesh_w_tex, R=R, T=T) | ||
images_w_tex = np.clip(images_w_tex[0, ..., :3].cpu().numpy(), 0.0, 1.0)[:, :, ::-1] * 255 | ||
images_wo_tex = renderer(mesh_wo_tex, R=R, T=T) | ||
images_wo_tex = np.clip(images_wo_tex[0, ..., :3].cpu().numpy(), 0.0, 1.0)[:, :, ::-1] * 255 | ||
image = np.concatenate([images_w_tex, images_wo_tex], axis=1) | ||
out.write(image.astype('uint8')) | ||
out.release() | ||
|
||
def video(path): | ||
mp4 = open(path,'rb').read() | ||
data_url = "data:video/mp4;base64," + b64encode(mp4).decode() | ||
return HTML('<video width=500 controls loop> <source src="%s" type="video/mp4"></video>' % data_url) |