forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
667 lines (586 loc) · 25.5 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# Fork of Sonnet transformer model with small modifications
#
# Copyright 2017 The Sonnet Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Implementation of Transformer networks.
Size glossary:
* Batch size (B).
* Sequence length (N).
* Memory size (M). The size of the optional memory, passed in via `state`.
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Embedding size (HV). The size of the activation or embedding relating to
each input between layers. Equal to value_size * num_heads.
* All attention size (F). The size of all attention activations over every
head.
* QKV size (F / H): The size of the query, key and value per head. Equal to
2K + V or equivalently F / H.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
from sonnet.python.modules import base
from sonnet.python.modules import basic
from sonnet.python.modules import layer_norm as snt_ln
from sonnet.python.modules import util
from sonnet.python.modules.nets import mlp as snt_mlp
import tensorflow.compat.v1 as tf
AttentionState = collections.namedtuple('AttentionState',
('queries', 'keys', 'values', 'logits',
'weights', 'embeddings', 'read_words'))
CompressedMemoryState = collections.namedtuple(
'CompressedMemoryState', ('episodic_memory', 'compressed_memory', 'index'))
def rel_shift(position_logits):
"""Shifting of logits for relative attention.
Args:
position_logits: A tensor of shape [B, H, N, N + M].
Returns:
The shifted logits. Example, for input (H=1, B=1):
[5, 4, 3, 2, 1]
[5, 4, 3, 2, 1]
[5, 4, 3, 2, 1]
[5, 4, 3, 2, 1]
[5, 4, 3, 2, 1]
the function outputs:
[1, 0, 5, 4, 3]
[2, 1, 0, 5, 4]
[3, 2, 1, 0, 5]
[4, 3, 2, 1, 0]
[5, 4, 3, 2, 1]
Raises:
ValueError if position_logits is not 4D.
Note: this is not an exact shift as the upper triangle is non-zero. This
works as intended in the causally-masked case. If this is used with un-masked
attention, we'd want these to also be zero.
"""
if position_logits.get_shape().ndims != 4:
raise ValueError('Expected 4D position logits.')
input_shape = position_logits.shape
batch_size = input_shape[0]
num_heads = input_shape[1]
t1 = input_shape[2]
t2 = input_shape[3]
# We prepend zeros on the final timescale dimension.
to_pad = tf.zeros([batch_size, num_heads, t1, 1])
position_logits = tf.concat([to_pad, position_logits], -1)
# Reshape trick to shift input.
position_logits = tf.reshape(position_logits,
[batch_size, num_heads, t2 + 1, t1])
# Remove extra time dimension and re-shape.
position_logits = position_logits[:, :, 1:]
position_logits = tf.reshape(position_logits, input_shape)
return position_logits
def _layer_norm(inputs):
if inputs.get_shape().ndims > 2:
return basic.BatchApply(snt_ln.LayerNorm())(inputs)
else:
return snt_ln.LayerNorm()(inputs)
def _concat_and_slice(prev_memory, new_memory):
original_memory_size = prev_memory.get_shape().as_list()[1]
concat_memory = tf.concat([prev_memory, new_memory], 1)
memory = concat_memory[:, -original_memory_size:]
return memory, concat_memory
def simple_attention(queries, keys, values):
logits = tf.matmul(queries, keys, transpose_b=True)
weights = tf.nn.softmax(logits)
return tf.matmul(weights, values)
class ResidualDropoutWrapper(base.AbstractModule):
"""Wrapper class that applies residual connections, dropout and layer norm.
By default applies a relu to the module output before the other operations.
"""
def __init__(self,
layer,
dropout_rate,
layer_norm='input',
name='residual_dropout_wrapper'):
self._module = layer
self._dropout_rate = dropout_rate
self._layer_norm = layer_norm
super(ResidualDropoutWrapper, self).__init__(name=name)
def _build(self, inputs, *args, **kwargs):
if self._layer_norm in ('both', 'input'):
normed_inputs = _layer_norm(inputs)
else:
normed_inputs = inputs
module_output = self._module(normed_inputs, *args, **kwargs)
module_state = None
# If module outputs multiple items, assumes (output, state) tuple.
if isinstance(module_output, tuple):
module_output, module_state = module_output
if kwargs['is_training']: # kwargs must contain is_training.
module_output = tf.nn.dropout(module_output, rate=self._dropout_rate)
output = inputs + module_output
if self._layer_norm in ('both', 'output'):
output = _layer_norm(output)
if module_state is None:
return output
else:
return output, module_state
def future_mask(chunk_size, dtype):
"""Creates attention mask to ensure an element i cannot attend to j > i."""
square = tf.ones([chunk_size, chunk_size], dtype=dtype)
# Create upper diagonal matrix and remove diagonal entries (allow self-attn).
mask = tf.matrix_band_part(square, 0, -1) - tf.matrix_band_part(square, 0, 0)
# Multiply by -1e6 and expand to broadcast with [B, H, N, N] logits.
mask = -1e6 * tf.reshape(mask, [1, 1, chunk_size, chunk_size])
return mask
def _memory_size(state):
if isinstance(state, CompressedMemoryState):
return (state.episodic_memory.get_shape().as_list()[1] +
state.compressed_memory.get_shape().as_list()[1])
else:
return state.get_shape().as_list()[1]
def create_mask(inputs, state, equal_window):
"""Creates mask for future sequence positions.
Args:
inputs: inputs tensor of shape [B, N, D]
state: optional tensor of shape [B, M, D], CompressedMemoryState or a list
where the ith entry corresponds to the ith layer's state.
equal_window: if True, then each activation has an equally-sized attention
window of length 'M'. This only makes sense if a state is given.
Returns:
Float tensor of shape [1, 1, N, N + M], to be summed with logits.
"""
chunk_size = inputs.get_shape().as_list()[1]
dtype = inputs.dtype
mask = future_mask(chunk_size, dtype)
if state is not None:
if isinstance(state, (tuple, list)):
largest_memory_layer = np.argmax([_memory_size(s) for s in state])
state = state[largest_memory_layer]
mem_size = _memory_size(state)
mask = tf.concat(
[tf.zeros([1, 1, chunk_size, mem_size], dtype=dtype), mask], 3)
if equal_window:
attn_mask = tf.ones([chunk_size, chunk_size], dtype=dtype)
mask_dia = tf.cast(tf.matrix_band_part(attn_mask, 0, 0), dtype=dtype)
mask_l = tf.cast(tf.matrix_band_part(attn_mask, -1, 0), dtype=dtype)
start_mask = tf.reshape(mask_l - mask_dia,
[1, 1, chunk_size, chunk_size]) * -1e6
mask = tf.concat(
[mask[:, :, :, :chunk_size] + start_mask, mask[:, :, :, chunk_size:]],
3)
return mask
def default_mlp(hidden_sizes, activate_final=False, init_std=2., **kwargs):
"""Standard batch-applied MLP for transformer modules."""
init = {'w': tf.variance_scaling_initializer(init_std, distribution='normal')}
mlp = snt_mlp.MLP(
hidden_sizes,
activate_final=activate_final,
use_dropout=True,
initializers=init,
**kwargs)
return basic.BatchApply(mlp)
def get_position_encodings(sequence_length,
hidden_size,
clamp_value,
max_timescale=10000.,
min_timescale=2.0):
"""Creates sinusoidal encodings of shape [1, N + M, D]."""
# NOTE: when not using relative position encodings, min_timescale must be 2.0
# and hidden_size must be an even number. Otherwise, the dimensions do not
# match.
pos_seq = tf.range(sequence_length - 1, -1, -1.0)
if clamp_value > 0:
pos_seq = tf.minimum(pos_seq, clamp_value)
freqs = tf.range(0, hidden_size, min_timescale)
inv_freq = 1 / (max_timescale**(freqs / hidden_size))
sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
pos_emb = tf.expand_dims(pos_emb, 0)
output_dim = pos_emb.get_shape().as_list()[-1]
if output_dim != hidden_size:
raise ValueError(
'position embedding dimension ({}) does not match that of the input ({}).'
.format(output_dim, hidden_size))
return pos_emb
class MultiheadAttention(base.AbstractModule):
"""Implements multi-head attention with optional state context."""
def __init__(self,
value_size,
key_size,
num_heads,
mask=None,
scaling=True,
positional_encodings=None,
use_relative_positions=False,
init_std=2.,
name='multihead_attention'):
"""Creates a MultiheadAttention module.
Args:
value_size: V parameter. See size glossary in class docstring.
key_size: K parameter. See size glossary in class docstring.
num_heads: The number of independent queries per timestep.
mask: Optional mask to attention logits. This can prevent attending to
future positions or unused memory slots.
scaling: Whether to scale the attention logits.
positional_encodings: Either None (none given), or an iterable of
`(key_positional_encodings, query_positional_encodings)` tuples, where
the first encodings in the list indicate the oldest entries in memory
and the final encodings indicate the newest entries in memory and the
sequence.
use_relative_positions: If True then relative positions are incorporated,
vs absolute, into the attention logits. This is done exactly as
described in the TransformerXL, Dai et al. 2019.
init_std: scaling of standard deviation for weight matrices init.
name: Name of module.
"""
super(MultiheadAttention, self).__init__(name=name)
self._value_size = value_size
self._key_size = key_size
self._sizes = {
'value': self._value_size,
'key': self._key_size,
'query': self._key_size,
'relative_keys': self._key_size,
'relative_keys_0': self._key_size,
}
self._num_heads = num_heads
self._mask = mask
self._scaling = scaling
self._positional_encodings = positional_encodings
self._use_relative_positions = use_relative_positions
self._init = {'w': tf.variance_scaling_initializer(init_std)}
@util.reuse_variables
def multihead_linear(self, inputs, name):
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
hidden_size = self._sizes[name]
input_size = inputs.shape[-1].value
w = tf.get_variable(
'linear/w',
shape=[input_size, self._num_heads * hidden_size],
initializer=self._init['w'])
w = tf.reshape(w, [input_size, self._num_heads, hidden_size])
out = tf.einsum('bij,jhk->bhik', inputs, w)
return out
def _build(self,
inputs,
query_inputs=None,
state=None,
is_training=False,
dropout_keep_prob=0.5,
key_value_inputs=None):
"""Calculates multi-layer self attention.
Args:
inputs: Tensor of shape [batch_size, num_steps, output_dim_size]. Inputs
used as the query, key, and value to the attention layer.
query_inputs: optional Tensor of shape [batch_size, num_steps,
output_dim_size]. Query inputs to the attention layer. Set when
query_inputs is different from the inputs argument.
state: optional CompressedMemoryState or a Tensor of shape [batch_size,
memory_size, dim_size] concatenated to the inputs. Set when attend to
the memory from previous steps.
is_training: if currently training.
dropout_keep_prob: dropout rate applied to attention weights.
key_value_inputs: optional Tensor of shape [batch_size, num_steps,
output_dim_size]. It is used as the key and value of the multihead
attention. Set when the key and value are different from the inputs
argument.
Returns:
output: the result Tensor of shape
[batch_size, num_steps, output_dim_size].
attention_state: named tuple of AttentionState.
"""
if key_value_inputs is not None and state is not None:
raise ValueError('Only one of the key_value_input and state is needed.')
embedding_size = self._value_size * self._num_heads
q_inputs = inputs if query_inputs is None else query_inputs
# Denoted by L. If query_inputs is None, L = N.
_, query_size = q_inputs.get_shape().as_list()[:2]
if key_value_inputs is not None:
k_inputs = key_value_inputs
v_inputs = k_inputs
elif state is not None:
if isinstance(state, CompressedMemoryState):
state_memory_list = [state.compressed_memory, state.episodic_memory]
else:
state_memory_list = [state]
k_inputs = tf.concat(state_memory_list + [inputs], 1)
v_inputs = k_inputs
else:
k_inputs = inputs
v_inputs = inputs
# Batch size denoted by B
batch_size = tf.shape(inputs)[0]
# Chunk_size denoted by N
chunk_size = inputs.get_shape().as_list()[1]
# Denoted by N + M
att_size = k_inputs.get_shape().as_list()[1]
if self._positional_encodings and not self._use_relative_positions:
if len(self._positional_encodings) != 1:
raise ValueError(
'Absolute positional encodings only supported for 1 memory. '
'Found %i.' % len(self._positional_encodings))
key_positions, query_positions = self._positional_encodings[0]
k_inputs += key_positions
q_inputs += query_positions
# [B, H, L, K]
q = self.multihead_linear(q_inputs, 'query')
# [B, H, N + M, K]
k = self.multihead_linear(k_inputs, 'key')
# [B, H, N + M, V]
v = self.multihead_linear(v_inputs, 'value')
# Scaling the dot-product
if self._scaling:
q *= self._key_size**-0.5
# [B, H, L, N + M]
if self._use_relative_positions:
r_w_bias = tf.get_variable(
'r_w_bias', [1, self._num_heads, 1, self._key_size],
dtype=inputs.dtype)
content_logits = tf.matmul(q + r_w_bias, k, transpose_b=True)
all_relative_logits = []
# Loop over multiple positional encodings, for the case of multiple
# memory types.
for i, positional_encodings in enumerate(self._positional_encodings):
key_positions, query_positions = positional_encodings
if key_positions.get_shape().as_list()[-1] != att_size:
key_positions = key_positions[:, -att_size:] # Crop to layer mem size
is_final = i == len(self._positional_encodings) - 1
suffix = '' if is_final else '_%d' % i
relative_keys = self.multihead_linear(
key_positions, name='relative_keys' + suffix)
# [B, H, N, D]
r_r_bias = tf.get_variable(
'r_r_bias' + suffix, [1, self._num_heads, 1, self._key_size],
dtype=inputs.dtype)
relative_keys = tf.tile(relative_keys, [batch_size, 1, 1, 1])
relative_logits = tf.matmul(
q + r_r_bias, relative_keys, transpose_b=True)
relative_logits = rel_shift(relative_logits)
if not is_final: # Include relative positions for input sequence.
relative_logits = relative_logits[:, :, :, :-chunk_size]
all_relative_logits.append(relative_logits)
all_relative_logits = tf.concat(all_relative_logits, 3)
logits = content_logits + all_relative_logits
else:
# [B, H, N, N + M]
logits = tf.matmul(q, k, transpose_b=True)
content_logits = logits
if self._mask is not None:
if self._mask.get_shape().as_list()[-1] != att_size:
mask = self._mask[:, :, :, -att_size:]
else:
mask = self._mask
logits += mask
weights = tf.nn.softmax(logits)
if is_training:
weights = tf.nn.dropout(weights, dropout_keep_prob)
# [B, L, H, V], where V is value_size
output_transpose = tf.einsum('bhij,bhjk->bihk', weights, v)
# [B, L, H, V] -> [B, L, HV]
attended_inputs = basic.BatchReshape([query_size, embedding_size])(
output_transpose)
# Apply final mlp to mix information between heads.
output = basic.BatchApply(basic.Linear(embedding_size))(attended_inputs)
attention_state = AttentionState(
queries=q,
keys=k,
values=v,
weights=weights,
logits=content_logits,
embeddings=inputs,
read_words=output)
return output, attention_state
class TransformerTower(base.AbstractModule):
"""Transformer tower.
Deep residual network using blocks of attention and MLPs, specified in
Vaswani et al. 2017.
"""
def __init__(self,
value_size,
num_heads,
num_layers,
causal=True,
key_size=None,
shared_attention=False,
output_size=None,
mlp_hidden_sizes=tuple([1024]),
dropout_rate=0.1,
use_relative_positions=True,
clamp_time_range=0,
same_attention_length=False,
layer_norm='input',
name='transformer_tower'):
"""Initializes TransformerTower.
Args:
value_size: dimensionality of values per-head.
num_heads: number of attention heads.
num_layers: number of transformer blocks, where each block contains a
multi-head attention layer and an MLP.
causal: if True, applies a causal mask.
key_size: optional dimensionality of key size. If unspecified then it is
set to `value_size`.
shared_attention: if True, attention params are shared across all layers.
output_size: if set, the desired output dimensionality. By default the
output size is `value_size` x `num_heads`.
mlp_hidden_sizes: tuple containing dimensionality of mlp layer(s). If
multiple values are specified, the mlp contains multiple layers for each
transformer block.
dropout_rate: dropout rate applied to hidden activations, attention, and
positional encodings.
use_relative_positions: if False, applies absolute positional encodings.
If true, uses relative positional encodings from Dai et al. 2019.
clamp_time_range: clamps max temporal positional encoding if specified.
same_attention_length: if True, attention is masked to ensure each
position in the sequence contains the same length of attention.
layer_norm: Where to apply layer-norm in Transformer block. Can be one of
'input' (Vaswani et al. 2017), 'output', or 'both'.
name: name of variable scope.
"""
super(TransformerTower, self).__init__(name=name)
self._causal = causal
self._mask = None
if key_size is None:
key_size = value_size
self._key_size = key_size
self._value_size = value_size
self._shared_attention = shared_attention
self._num_heads = num_heads
self._num_layers = num_layers
self._output_size = output_size
self._embedding_size = self._value_size * self._num_heads
self._mlp_hidden_sizes = list(mlp_hidden_sizes) + [self._embedding_size]
self._multihead_attention = None
self._object_embeddings = None
self._dropout_rate = dropout_rate
self._positional_encodings = None
self._use_relative_positions = use_relative_positions
self._clamp_time_range = clamp_time_range
self._same_attention_length = same_attention_length
self._layer_norm = layer_norm
self._attention_modules = []
self._object_mlps = []
def get_sublayers(self, is_training):
if self._multihead_attention is None or not self._shared_attention:
attention_module = MultiheadAttention(
value_size=self._value_size,
key_size=self._key_size,
num_heads=self._num_heads,
mask=self._mask,
positional_encodings=self._positional_encodings,
use_relative_positions=self._use_relative_positions,
init_std=2. / np.sqrt(self._num_layers),
)
self._multihead_attention = ResidualDropoutWrapper(
attention_module, self._dropout_rate, layer_norm=self._layer_norm)
mlp = default_mlp(
self._mlp_hidden_sizes, init_std=2. / np.sqrt(self._num_layers))
object_mlp = ResidualDropoutWrapper(
mlp, self._dropout_rate, layer_norm=self._layer_norm)
self._attention_modules.append(attention_module)
self._object_mlps.append(mlp)
return self._multihead_attention, object_mlp
def _build(self,
inputs,
state=None,
condition=None,
is_training=True,
final_layer_key_value_inputs=None):
"""Calculates multi-layer self attention and mlp transformation.
Args:
inputs: Tensor of shape [batch_size, num_steps, dim_size].
state: optional list of length num_layers of tensors of shape
[batch_size, memory_size, dim_size].
condition: optional tensor to condition on. The shape is shape
[batch_size, dim_size].
is_training: If true, dropout is applied.
final_layer_key_value_inputs: optional Tensor to be used as the key and
value for the final multi-head attention layer of shape
[batch_size, num_steps, dim_size]. Useful when the tower is a Seq2Seq
decoder and it can attend to encoder outputs.
Returns:
output: tensor of shape [batch_size, num_steps, output_dim_size].
state: list of length `num_layers` containing AttentionState tuples.
"""
# inputs: [B, N, F]
if final_layer_key_value_inputs is not None and state is not None and len(
state) == (self._num_layers - 1):
raise ValueError('When the final_layer_key_value_input is set, exclude'
'the state of the last layer.')
if condition is not None:
condition_tile = tf.tile(
tf.expand_dims(condition, 1), [1, tf.shape(inputs)[1], 1])
inputs = tf.concat([inputs, condition_tile], -1)
# Map inputs to be of `embedding_size` dimension.
if inputs.get_shape().as_list()[-1] != self._embedding_size:
inputs = default_mlp([self._embedding_size], activate_final=True)(
inputs,
is_training=is_training,
dropout_keep_prob=1 - self._dropout_rate)
if state is None:
memory_sizes = [0]
elif isinstance(state[0], CompressedMemoryState):
cm_mem_size = max(_memory_size(s.compressed_memory) for s in state)
em_mem_size = max(_memory_size(s.episodic_memory) for s in state)
memory_sizes = [cm_mem_size, em_mem_size]
else:
memory_sizes = [max([_memory_size(s) for s in state])]
chunk_size = inputs.get_shape().as_list()[1]
self._positional_encodings = []
# Creates positional encodings for different memory types.
for i, memory_size in enumerate(memory_sizes):
seq_len = chunk_size + memory_size
key_positions = get_position_encodings(
sequence_length=seq_len,
hidden_size=inputs.get_shape().as_list()[2],
clamp_value=self._clamp_time_range,
)
if is_training:
key_positions = tf.nn.dropout(key_positions, rate=self._dropout_rate)
key_positions = tf.cast(key_positions, dtype=inputs.dtype)
query_positions = key_positions[:, -chunk_size:, :]
self._positional_encodings.append((key_positions, query_positions))
if self._causal:
self._mask = create_mask(inputs, state, self._same_attention_length)
layer_i_inputs = inputs
attention_states = []
key_value_inputs = None
for i in range(self._num_layers):
with tf.variable_scope('layer_%d' % i, reuse=tf.AUTO_REUSE):
multihead_attention, object_mlp = self.get_sublayers(is_training)
# Multihead attention with residuals.
state_i = None if state is None else state[i]
if i == (self._num_layers -
1) and final_layer_key_value_inputs is not None:
# When the final_layer_key_value_inputs is set, the finaly layer
# of attention will use it as the key & value, thus no need for state.
key_value_inputs = final_layer_key_value_inputs
state_i = None
attention_outputs, attention_state = multihead_attention(
layer_i_inputs,
state=state_i,
is_training=is_training,
dropout_keep_prob=1. - self._dropout_rate,
key_value_inputs=key_value_inputs)
attention_states.append(attention_state)
# Feed-forward with residuals.
output = object_mlp(
attention_outputs,
is_training=is_training,
dropout_keep_prob=1 - self._dropout_rate)
layer_i_inputs = output
if self._output_size is not None:
output = basic.BatchApply(
basic.Linear(self._output_size, use_bias=False))(
output)
return output, attention_states
def attention_module(self, i):
"""Returns the i-th layer attention module."""
return self._attention_modules[i]