forked from shunsukesaito/PIFu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_shape.py
183 lines (145 loc) · 7.45 KB
/
train_shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import sys
import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
import time
import json
import numpy as np
import cv2
import random
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from lib.options import BaseOptions
from lib.mesh_util import *
from lib.sample_util import *
from lib.train_util import *
from lib.data import *
from lib.model import *
from lib.geometry import index
# get options
opt = BaseOptions().parse()
def train(opt):
# set cuda
cuda = torch.device('cuda:%d' % opt.gpu_id)
train_dataset = TrainDataset(opt, phase='train')
test_dataset = TrainDataset(opt, phase='test')
projection_mode = train_dataset.projection_mode
# create data loader
train_data_loader = DataLoader(train_dataset,
batch_size=opt.batch_size, shuffle=not opt.serial_batches,
num_workers=opt.num_threads, pin_memory=opt.pin_memory)
print('train data size: ', len(train_data_loader))
# NOTE: batch size should be 1 and use all the points for evaluation
test_data_loader = DataLoader(test_dataset,
batch_size=1, shuffle=False,
num_workers=opt.num_threads, pin_memory=opt.pin_memory)
print('test data size: ', len(test_data_loader))
# create net
netG = HGPIFuNet(opt, projection_mode).to(device=cuda)
optimizerG = torch.optim.RMSprop(netG.parameters(), lr=opt.learning_rate, momentum=0, weight_decay=0)
lr = opt.learning_rate
print('Using Network: ', netG.name)
def set_train():
netG.train()
def set_eval():
netG.eval()
# load checkpoints
if opt.load_netG_checkpoint_path is not None:
print('loading for net G ...', opt.load_netG_checkpoint_path)
netG.load_state_dict(torch.load(opt.load_netG_checkpoint_path, map_location=cuda))
if opt.continue_train:
if opt.resume_epoch < 0:
model_path = '%s/%s/netG_latest' % (opt.checkpoints_path, opt.name)
else:
model_path = '%s/%s/netG_epoch_%d' % (opt.checkpoints_path, opt.name, opt.resume_epoch)
print('Resuming from ', model_path)
netG.load_state_dict(torch.load(model_path, map_location=cuda))
os.makedirs(opt.checkpoints_path, exist_ok=True)
os.makedirs(opt.results_path, exist_ok=True)
os.makedirs('%s/%s' % (opt.checkpoints_path, opt.name), exist_ok=True)
os.makedirs('%s/%s' % (opt.results_path, opt.name), exist_ok=True)
opt_log = os.path.join(opt.results_path, opt.name, 'opt.txt')
with open(opt_log, 'w') as outfile:
outfile.write(json.dumps(vars(opt), indent=2))
# training
start_epoch = 0 if not opt.continue_train else max(opt.resume_epoch,0)
for epoch in range(start_epoch, opt.num_epoch):
epoch_start_time = time.time()
set_train()
iter_data_time = time.time()
for train_idx, train_data in enumerate(train_data_loader):
iter_start_time = time.time()
# retrieve the data
image_tensor = train_data['img'].to(device=cuda)
calib_tensor = train_data['calib'].to(device=cuda)
sample_tensor = train_data['samples'].to(device=cuda)
image_tensor, calib_tensor = reshape_multiview_tensors(image_tensor, calib_tensor)
if opt.num_views > 1:
sample_tensor = reshape_sample_tensor(sample_tensor, opt.num_views)
label_tensor = train_data['labels'].to(device=cuda)
res, error = netG.forward(image_tensor, sample_tensor, calib_tensor, labels=label_tensor)
optimizerG.zero_grad()
error.backward()
optimizerG.step()
iter_net_time = time.time()
eta = ((iter_net_time - epoch_start_time) / (train_idx + 1)) * len(train_data_loader) - (
iter_net_time - epoch_start_time)
if train_idx % opt.freq_plot == 0:
print(
'Name: {0} | Epoch: {1} | {2}/{3} | Err: {4:.06f} | LR: {5:.06f} | Sigma: {6:.02f} | dataT: {7:.05f} | netT: {8:.05f} | ETA: {9:02d}:{10:02d}'.format(
opt.name, epoch, train_idx, len(train_data_loader), error.item(), lr, opt.sigma,
iter_start_time - iter_data_time,
iter_net_time - iter_start_time, int(eta // 60),
int(eta - 60 * (eta // 60))))
if train_idx % opt.freq_save == 0 and train_idx != 0:
torch.save(netG.state_dict(), '%s/%s/netG_latest' % (opt.checkpoints_path, opt.name))
torch.save(netG.state_dict(), '%s/%s/netG_epoch_%d' % (opt.checkpoints_path, opt.name, epoch))
if train_idx % opt.freq_save_ply == 0:
save_path = '%s/%s/pred.ply' % (opt.results_path, opt.name)
r = res[0].cpu()
points = sample_tensor[0].transpose(0, 1).cpu()
save_samples_truncted_prob(save_path, points.detach().numpy(), r.detach().numpy())
iter_data_time = time.time()
# update learning rate
lr = adjust_learning_rate(optimizerG, epoch, lr, opt.schedule, opt.gamma)
#### test
with torch.no_grad():
set_eval()
if not opt.no_num_eval:
test_losses = {}
print('calc error (test) ...')
test_errors = calc_error(opt, netG, cuda, test_dataset, 100)
print('eval test MSE: {0:06f} IOU: {1:06f} prec: {2:06f} recall: {3:06f}'.format(*test_errors))
MSE, IOU, prec, recall = test_errors
test_losses['MSE(test)'] = MSE
test_losses['IOU(test)'] = IOU
test_losses['prec(test)'] = prec
test_losses['recall(test)'] = recall
print('calc error (train) ...')
train_dataset.is_train = False
train_errors = calc_error(opt, netG, cuda, train_dataset, 100)
train_dataset.is_train = True
print('eval train MSE: {0:06f} IOU: {1:06f} prec: {2:06f} recall: {3:06f}'.format(*train_errors))
MSE, IOU, prec, recall = train_errors
test_losses['MSE(train)'] = MSE
test_losses['IOU(train)'] = IOU
test_losses['prec(train)'] = prec
test_losses['recall(train)'] = recall
if not opt.no_gen_mesh:
print('generate mesh (test) ...')
for gen_idx in tqdm(range(opt.num_gen_mesh_test)):
test_data = random.choice(test_dataset)
save_path = '%s/%s/test_eval_epoch%d_%s.obj' % (
opt.results_path, opt.name, epoch, test_data['name'])
gen_mesh(opt, netG, cuda, test_data, save_path)
print('generate mesh (train) ...')
train_dataset.is_train = False
for gen_idx in tqdm(range(opt.num_gen_mesh_test)):
train_data = random.choice(train_dataset)
save_path = '%s/%s/train_eval_epoch%d_%s.obj' % (
opt.results_path, opt.name, epoch, train_data['name'])
gen_mesh(opt, netG, cuda, train_data, save_path)
train_dataset.is_train = True
if __name__ == '__main__':
train(opt)