forked from shunsukesaito/PIFu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_util.py
204 lines (169 loc) · 7.55 KB
/
train_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import numpy as np
from .mesh_util import *
from .sample_util import *
from .geometry import *
import cv2
from PIL import Image
from tqdm import tqdm
def reshape_multiview_tensors(image_tensor, calib_tensor):
# Careful here! Because we put single view and multiview together,
# the returned tensor.shape is 5-dim: [B, num_views, C, W, H]
# So we need to convert it back to 4-dim [B*num_views, C, W, H]
# Don't worry classifier will handle multi-view cases
image_tensor = image_tensor.view(
image_tensor.shape[0] * image_tensor.shape[1],
image_tensor.shape[2],
image_tensor.shape[3],
image_tensor.shape[4]
)
calib_tensor = calib_tensor.view(
calib_tensor.shape[0] * calib_tensor.shape[1],
calib_tensor.shape[2],
calib_tensor.shape[3]
)
return image_tensor, calib_tensor
def reshape_sample_tensor(sample_tensor, num_views):
if num_views == 1:
return sample_tensor
# Need to repeat sample_tensor along the batch dim num_views times
sample_tensor = sample_tensor.unsqueeze(dim=1)
sample_tensor = sample_tensor.repeat(1, num_views, 1, 1)
sample_tensor = sample_tensor.view(
sample_tensor.shape[0] * sample_tensor.shape[1],
sample_tensor.shape[2],
sample_tensor.shape[3]
)
return sample_tensor
def gen_mesh(opt, net, cuda, data, save_path, use_octree=True):
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
net.filter(image_tensor)
b_min = data['b_min']
b_max = data['b_max']
try:
save_img_path = save_path[:-4] + '.png'
save_img_list = []
for v in range(image_tensor.shape[0]):
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
save_img_list.append(save_img)
save_img = np.concatenate(save_img_list, axis=1)
Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path)
verts, faces, _, _ = reconstruction(
net, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree)
verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()
xyz_tensor = net.projection(verts_tensor, calib_tensor[:1])
uv = xyz_tensor[:, :2, :]
color = index(image_tensor[:1], uv).detach().cpu().numpy()[0].T
color = color * 0.5 + 0.5
save_obj_mesh_with_color(save_path, verts, faces, color)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
def gen_mesh_color(opt, netG, netC, cuda, data, save_path, use_octree=True):
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
netG.filter(image_tensor)
netC.filter(image_tensor)
netC.attach(netG.get_im_feat())
b_min = data['b_min']
b_max = data['b_max']
try:
save_img_path = save_path[:-4] + '.png'
save_img_list = []
for v in range(image_tensor.shape[0]):
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
save_img_list.append(save_img)
save_img = np.concatenate(save_img_list, axis=1)
Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path)
verts, faces, _, _ = reconstruction(
netG, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree)
# Now Getting colors
verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()
verts_tensor = reshape_sample_tensor(verts_tensor, opt.num_views)
color = np.zeros(verts.shape)
interval = 10000
for i in range(len(color) // interval):
left = i * interval
right = i * interval + interval
if i == len(color) // interval - 1:
right = -1
netC.query(verts_tensor[:, :, left:right], calib_tensor)
rgb = netC.get_preds()[0].detach().cpu().numpy() * 0.5 + 0.5
color[left:right] = rgb.T
save_obj_mesh_with_color(save_path, verts, faces, color)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma):
"""Sets the learning rate to the initial LR decayed by schedule"""
if epoch in schedule:
lr *= gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def compute_acc(pred, gt, thresh=0.5):
'''
return:
IOU, precision, and recall
'''
with torch.no_grad():
vol_pred = pred > thresh
vol_gt = gt > thresh
union = vol_pred | vol_gt
inter = vol_pred & vol_gt
true_pos = inter.sum().float()
union = union.sum().float()
if union == 0:
union = 1
vol_pred = vol_pred.sum().float()
if vol_pred == 0:
vol_pred = 1
vol_gt = vol_gt.sum().float()
if vol_gt == 0:
vol_gt = 1
return true_pos / union, true_pos / vol_pred, true_pos / vol_gt
def calc_error(opt, net, cuda, dataset, num_tests):
if num_tests > len(dataset):
num_tests = len(dataset)
with torch.no_grad():
erorr_arr, IOU_arr, prec_arr, recall_arr = [], [], [], []
for idx in tqdm(range(num_tests)):
data = dataset[idx * len(dataset) // num_tests]
# retrieve the data
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
sample_tensor = data['samples'].to(device=cuda).unsqueeze(0)
if opt.num_views > 1:
sample_tensor = reshape_sample_tensor(sample_tensor, opt.num_views)
label_tensor = data['labels'].to(device=cuda).unsqueeze(0)
res, error = net.forward(image_tensor, sample_tensor, calib_tensor, labels=label_tensor)
IOU, prec, recall = compute_acc(res, label_tensor)
# print(
# '{0}/{1} | Error: {2:06f} IOU: {3:06f} prec: {4:06f} recall: {5:06f}'
# .format(idx, num_tests, error.item(), IOU.item(), prec.item(), recall.item()))
erorr_arr.append(error.item())
IOU_arr.append(IOU.item())
prec_arr.append(prec.item())
recall_arr.append(recall.item())
return np.average(erorr_arr), np.average(IOU_arr), np.average(prec_arr), np.average(recall_arr)
def calc_error_color(opt, netG, netC, cuda, dataset, num_tests):
if num_tests > len(dataset):
num_tests = len(dataset)
with torch.no_grad():
error_color_arr = []
for idx in tqdm(range(num_tests)):
data = dataset[idx * len(dataset) // num_tests]
# retrieve the data
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
color_sample_tensor = data['color_samples'].to(device=cuda).unsqueeze(0)
if opt.num_views > 1:
color_sample_tensor = reshape_sample_tensor(color_sample_tensor, opt.num_views)
rgb_tensor = data['rgbs'].to(device=cuda).unsqueeze(0)
netG.filter(image_tensor)
_, errorC = netC.forward(image_tensor, netG.get_im_feat(), color_sample_tensor, calib_tensor, labels=rgb_tensor)
# print('{0}/{1} | Error inout: {2:06f} | Error color: {3:06f}'
# .format(idx, num_tests, errorG.item(), errorC.item()))
error_color_arr.append(errorC.item())
return np.average(error_color_arr)