-
Notifications
You must be signed in to change notification settings - Fork 18
/
mnist_bn.py
194 lines (169 loc) · 8.07 KB
/
mnist_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import os
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.python.ops import control_flow_ops
from tensorflow.python import debug as tf_debug
FLAGS = None
def model():
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
keep_prob = tf.placeholder(tf.float32, [])
y_ = tf.placeholder(tf.float32, [None, 10])
is_training = tf.placeholder(tf.bool, [])
x_image = tf.reshape(x, [-1, 28, 28, 1])
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.crelu,
normalizer_fn=tf.layers.batch_normalization,
normalizer_params={'training': is_training, 'momentum': 0.95}):
conv1 = slim.conv2d(x_image, 16, [5, 5], scope='conv1')
pool1 = slim.max_pool2d(conv1, [2, 2], scope='pool1')
conv2 = slim.conv2d(pool1, 32, [5, 5], scope='conv2')
pool2 = slim.max_pool2d(conv2, [2, 2], scope='pool2')
flatten = slim.flatten(pool2)
fc = slim.fully_connected(flatten, 1024, scope='fc1')
drop = slim.dropout(fc, keep_prob=keep_prob)
logits = slim.fully_connected(drop, 10, activation_fn=None, scope='logits')
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=logits))
step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.2)
train_step = slim.learning.create_train_op(cross_entropy, optimizer, global_step=step)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
print("BN parameters: ", update_ops)
updates = tf.group(*update_ops)
train_step = control_flow_ops.with_dependencies([updates], train_step)
# Add summaries for BN variables
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('cross_entropy', cross_entropy)
for v in tf.all_variables():
print(v.name)
if 'batch_normalization' in v.name:
tf.summary.histogram(v.name, v)
merged_summary_op = tf.summary.merge_all()
return {'x': x,
'y_': y_,
'keep_prob': keep_prob,
'is_training': is_training,
'train_step': train_step,
'global_step': step,
'accuracy': accuracy,
'cross_entropy': cross_entropy,
'summary': merged_summary_op}
def train():
# clear checkpoint directory
print('Clearing existed checkpoints and logs')
for root, sub_folder, file_list in os.walk(FLAGS.checkpoint_dir):
for f in file_list:
os.remove(os.path.join(root, f))
for root, sub_folder, file_list in os.walk(FLAGS.train_log_dir):
for f in file_list:
os.remove(os.path.join(root, f))
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
net = model()
sess = tf.Session()
# DEBUGGING
# sess = tf_debug.LocalCLIDebugWrapperSession(sess)
# sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter(os.path.join(FLAGS.train_log_dir, 'train'), sess.graph)
valid_writer = tf.summary.FileWriter(os.path.join(FLAGS.train_log_dir, 'valid'), sess.graph)
# Train
batch_size = FLAGS.batch_size
for i in range(10001):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
train_dict = {net['x']: batch_xs,
net['y_']: batch_ys,
net['keep_prob']: 0.5,
net['is_training']: True}
step, _ = sess.run([net['global_step'], net['train_step']], feed_dict=train_dict)
if step % 50 == 0:
train_dict = {net['x']: batch_xs,
net['y_']: batch_ys,
net['keep_prob']: 1.0,
net['is_training']: True}
entropy, acc, summary = sess.run([net['cross_entropy'], net['accuracy'], net['summary']],
feed_dict=train_dict)
train_writer.add_summary(summary, global_step=step)
print('Train step {}: entropy {}: accuracy {}'.format(step, entropy, acc))
# Note: the validation error is erratic in the beginning (Maybe 2~3k steps).
# This does NOT imply the batch normalization is buggy.
# On the contrary, it's BN's dynamics: moving_mean/variance are not estimated that well in the beginning.
valid_dict = {net['x']: batch_xs,
net['y_']: batch_ys,
net['keep_prob']: 1.0,
net['is_training']: False}
entropy, acc, summary = sess.run([net['cross_entropy'], net['accuracy'], net['summary']],
feed_dict=valid_dict)
valid_writer.add_summary(summary, global_step=step)
print('***** Valid step {}: entropy {}: accuracy {} *****'.format(step, entropy, acc))
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'mnist-conv-slim'))
print('Finish training')
# validation
acc = 0.0
batch_size = FLAGS.batch_size
num_iter = 5000 // batch_size
for i in range(num_iter):
batch_xs, batch_ys = mnist.validation.next_batch(batch_size)
test_dict = {net['x']: batch_xs,
net['y_']: batch_ys,
net['keep_prob']: 1.0,
net['is_training']: False}
acc_ = sess.run(net['accuracy'], feed_dict=test_dict)
acc += acc_
print('Overall validation accuracy {}'.format(acc / num_iter))
sess.close()
def test():
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# Test trained model
net = model()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt))
acc = 0.0
batch_size = FLAGS.batch_size
num_iter = 10000 // batch_size
for i in range(num_iter):
batch_xs, batch_ys = mnist.test.next_batch(batch_size)
feed_dict = {net['x']: batch_xs,
net['y_']: batch_ys,
net['keep_prob']: 1.0,
net['is_training']: False}
acc_ = sess.run(net['accuracy'], feed_dict=feed_dict)
acc += acc_
print('Overall test accuracy {}'.format(acc / num_iter))
sess.close()
def main(_):
if FLAGS.phase == 'train':
train()
else:
test()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='MNIST_data',
help='Directory for storing input data')
parser.add_argument('--phase', type=str, default='train',
help='Training or test phase, should be one of {"train", "test"}')
parser.add_argument('--batch_size', type=int, default=50,
help='Training or test phase, should be one of {"train", "test"}')
parser.add_argument('--train_log_dir', type=str, default='log',
help='Directory for logs')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory for checkpoint file')
FLAGS, unparsed = parser.parse_known_args()
if not os.path.isdir(FLAGS.checkpoint_dir):
os.mkdir(FLAGS.checkpoint_dir)
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)