This is the repo for the EWSN'22 paper "Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile Edge"
pip3 install -r requirements.txt
Download MNIST dataset and store it under folder data_m/. Organize the data by following hierachy.
/data_m
/MNIST
/processed
test.pt
training.pt
/raw
...
Download notMNIST dataset and store it under data_nm/. Organize the data by following hierachy.
/data_nm
/Test
/A
/B
...
/J
/Train
/A
/B
...
/J
Download GTSRB dataset in which the images are resized to 32x32. Organize the data by following hierachy.
/traffic-signs-data
test.p
train.p
valid.p
Download KUL BelgiumTS dataset. Preprocess the downloaded data with KUL_preprocess.py. Orgainize the data by following hierachy.
/KUL
test_data.npy
test_labels.npy
train_data.npy
train_labels.npy
python3 train_hypernet.py --cuda --dataset mnist
python3 train_hypernet.py --cuda --dataset gtsrb
python3 train_hypernet.py --cuda --dataset kul
python3 experiments.py --cuda