-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvoc_attention.py
337 lines (283 loc) · 12.4 KB
/
voc_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# imports
import json
import time
import pickle
import scipy.misc
import skimage.io
import cv2
import caffe
import numpy as np
import os.path as osp
from random import shuffle
from PIL import Image
import random, copy
from voc import load_pascal_annotation
class ImageSegDataLayer(caffe.Layer):
"""
This is a simple syncronous datalayer for training a Detection model on
PASCAL.
"""
def setup(self, bottom, top):
self.top_names = ['data', 'label_1s', 'label_2s', 'label_3s', 'label', 'attention']
# === Read input parameters ===
# params is a python dictionary with layer parameters.
params = eval(self.param_str)
SimpleTransformer.check_params(params)
# store input as class variables
self.batch_size = params['batch_size']
self.input_shape = params['crop_size']
# Create a batch loader to load the images.
self.batch_loader = BatchLoader(params)
# === reshape tops ===
# since we use a fixed input image size, we can shape the data layer
# once. Else, we'd have to do it in the reshape call.
top[0].reshape(
self.batch_size, 3, self.input_shape[0], self.input_shape[1])
# Note the 20 channels (because PASCAL has 20 classes.)
top[1].reshape(
self.batch_size, 1, self.input_shape[0], self.input_shape[1])
top[2].reshape(
self.batch_size, 1, self.input_shape[0], self.input_shape[1])
top[3].reshape(
self.batch_size, 1, self.input_shape[0], self.input_shape[1])
top[4].reshape(
self.batch_size, 1, self.input_shape[0], self.input_shape[1])
top[5].reshape(
self.batch_size, 1, self.input_shape[0], self.input_shape[1])
print_info("ImageSegDataLayer", params)
def forward(self, bottom, top):
"""
Load data.
"""
for itt in range(self.batch_size):
# Use the batch loader to load the next image.
im, label_1s, label_2s, label_3s, label, label_at = self.batch_loader.perpare_next_data()
# Add directly to the caffe data layer
top[0].data[itt, ...] = im
top[1].data[itt, ...] = label_1s
top[2].data[itt, ...] = label_2s
top[3].data[itt, ...] = label_3s
top[4].data[itt, ...] = label
top[5].data[itt, ...] = label_at
def reshape(self, bottom, top):
"""
There is no need to reshape the data, since the input is of fixed size
(rows and columns)
"""
pass
def backward(self, top, propagate_down, bottom):
"""
These layers does not back propagate
"""
pass
class BatchLoader(object):
"""
This class abstracts away the loading of images.
Images can either be loaded singly, or in a batch. The latter is used for
the asyncronous data layer to preload batches while other processing is
performed.
"""
def __init__(self, params):
self.batch_size = params['batch_size']
self.root_folder = params['root_folder']
self.source = params['source']
self.voc_dir = params['voc_dir']
# get list of image indexes.
self.indexlist = [line.strip().split() for line in open(self.source)]
self._cur = 0 # current image
# this class does some simple data-manipulations
self.transformer = SimpleTransformer(params)
print "BatchLoader initialized with {} images".format(
len(self.indexlist))
def perpare_next_data(self):
# Did we finish an epoch?
if self._cur == len(self.indexlist):
self._cur = 0
shuffle(self.indexlist)
# Load an image
index = self.indexlist[self._cur] # Get the image index
image_file_path, label_file_path = index
image = cv2.imread(self.root_folder+image_file_path, cv2.IMREAD_COLOR)
label = cv2.imread(self.root_folder+label_file_path, cv2.IMREAD_GRAYSCALE)
img_id = osp.splitext(osp.basename(label_file_path))[0]
annotation = load_pascal_annotation(img_id, self.voc_dir, False)
self._cur += 1
return self.transformer.preprocess(image, label, annotation)
class SimpleTransformer:
"""
SimpleTransformer is a simple class for preprocessing and deprocessing
images for caffe.
"""
def __init__(self, params):
import pickle
SimpleTransformer.check_params(params)
self.mean = params['mean']
self.is_mirror = params['mirror']
self.crop_h, self.crop_w = params['crop_size']
self.scale = params['scale']
self.phase = params['phase']
self.ignore_label = params['ignore_label']
def set_mean(self, mean):
"""
Set the mean to subtract for centering the data.
"""
self.mean = mean
def set_scale(self, scale):
"""
Set the data scaling.
"""
self.scale = scale
def load_object(self, filename):
with open(filename, 'rb') as input:
obj = pickle.load(input)
return obj
def get_threshold(self, cls_id):
return self.scale_threshold[self.classes[cls_id]]
def generate_scale_label(self, image, label, annotation):
boxes = annotation['boxes']
gt_classes = annotation['gt_classes']
annos = zip(boxes, gt_classes)
#base, ran = self.generate_scale_range(boxes)
f_scale = 0.5 + random.randint(0, 15) / 10.0
image = cv2.resize(image, None, fx=f_scale, fy=f_scale, interpolation = cv2.INTER_LINEAR)
label = cv2.resize(label, None, fx=f_scale, fy=f_scale, interpolation = cv2.INTER_NEAREST)
#label_1s, label_2s, label_3s = copy.copy(label), copy.copy(label), copy.copy(label)
label_1s, label_2s, label_3s = np.full(label.shape, self.ignore_label, dtype=np.uint8), np.full(label.shape, self.ignore_label, dtype=np.uint8), np.full(label.shape, self.ignore_label, dtype=np.uint8)
# label_1s, label_2s, label_3s, label_at = np.zeros_like(label), np.zeros_like(label), np.zeros_like(label), np.zeros_like(label)
# label_1s[label==255] = 255; label_2s[label==255] = 255; label_3s[label==255] = 255
label_at = np.zeros_like(label); label_at[label==255] = 255
def fitness(annos_item):
x1, y1, x2, y2 = annos_item[0]
sq = (x2 - x1) * (y2 - y1)
return sq
annos = sorted(annos, key=fitness, reverse=True)
for box, cls_id in annos:
box = np.array(box) * f_scale
x1, y1, x2, y2 = box
sq = (x2 - x1) * (y2 - y1)
s1 = label_1s[y1:y2, x1:x2]
s2 = label_2s[y1:y2, x1:x2]
s3 = label_3s[y1:y2, x1:x2]
s0 = label[y1:y2, x1:x2]
at = label_at[y1:y2, x1:x2]
index = (s0==cls_id)
if sq < 12544:
s1[index] = s0[index]
s2[index] = 255
s3[index] = 255
at[index] = 1
elif sq >= 12544 and sq < 50176:
s1[index] = 255
s2[index] = s0[index]
s3[index] = 255
at[index] = 2
elif sq >= 50176:
s1[index] = 255
s2[index] = 255
s3[index] = s0[index]
at[index] = 3
#at[s0==255] = label[s0==255]
# cv2.imshow('image ', image)
# cv2.imshow('label 1', label_1s)
# cv2.imshow('label 2', label_2s)
# cv2.imshow('label 3', label_3s)
# cv2.waitKey()
# a = random.randint(0,10000)
# cv2.imwrite('temp/'+ str(a) + '.png', label)
# cv2.imwrite('temp/'+ str(a) + '_s.png', label_1s)
# cv2.imwrite('temp/'+ str(a) + '_m.png', label_2s)
# cv2.imwrite('temp/'+ str(a) + '_l.png', label_3s)
return image, label_1s, label_2s, label_3s, label, label_at
def preprocess(self, image, label, boxes):
"""
preprocess() emulate the pre-processing occuring in the vgg16 caffe
prototxt.
"""
# image = cv2.convertTo(image, cv2.CV_64F)
image, label_1s, label_2s, label_3s, label, label_at = self.generate_scale_label(image, label, boxes)
image = np.asarray(image, np.float32)
image -= self.mean
image *= self.scale
img_h, img_w = label_1s.shape
pad_h = max(self.crop_h - img_h, 0)
pad_w = max(self.crop_w - img_w, 0)
if pad_h > 0 or pad_w > 0:
img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(0.0, 0.0, 0.0))
label_1s_pad = cv2.copyMakeBorder(label_1s, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(self.ignore_label,))
label_2s_pad = cv2.copyMakeBorder(label_2s, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(self.ignore_label,))
label_3s_pad = cv2.copyMakeBorder(label_3s, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(self.ignore_label,))
label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(self.ignore_label,))
label_at_pad = cv2.copyMakeBorder(label_at, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(self.ignore_label,))
else:
img_pad, label_1s_pad, label_2s_pad, label_3s_pad, label_pad, label_at_pad = image, label_1s, label_2s, label_3s, label, label_at
img_h, img_w = label_1s_pad.shape
if self.phase == 'Train':
h_off = random.randint(0, img_h - self.crop_h)
w_off = random.randint(0, img_w - self.crop_w)
else:
h_off = (img_h - self.crop_h) / 2
w_off = (img_w - self.crop_w) / 2
# roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h);
image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w].copy(), np.float32)
label_1s = np.asarray(label_1s_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w].copy(), np.float32)
label_2s = np.asarray(label_2s_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w].copy(), np.float32)
label_3s = np.asarray(label_3s_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w].copy(), np.float32)
label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w].copy(), np.float32)
label_at = np.asarray(label_at_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w].copy(), np.float32)
#image = image[:, :, ::-1] # change to BGR
image = image.transpose((2, 0, 1))
if self.is_mirror:
flip = np.random.choice(2) * 2 - 1
image = image[:, :, ::flip]
label_1s = label_1s[:, ::flip]
label_2s = label_2s[:, ::flip]
label_3s = label_3s[:, ::flip]
label = label[:, ::flip]
label_at = label_at[:, ::flip]
return image, label_1s, label_2s, label_3s, label, label_at
@classmethod
def check_params(cls, params):
if 'crop_size' not in params:
params['crop_size'] = (505, 505)
if 'mean' not in params:
params['mean'] = [128, 128, 128]
if 'scale' not in params:
params['scale'] = 1.0
if 'mirror' not in params:
params['mirror'] = False
if 'phase' not in params:
params['phase'] = 'Train'
if 'ignore_label' not in params:
params['ignore_label'] = 255
def print_info(name, params):
"""
Ouput some info regarding the class
"""
print "{} initialized for split: {}, with bs: {}, im_shape: {}.".format(
name,
params['source'],
params['batch_size'],
params['crop_size'])
if __name__ == '__main__':
params = {'batch_size': 2,
'mean': (104.008, 116.669, 122.675),
'root_folder': 'D:/v-zihuan/segmentation_with_scale/experiment/voc_part/data/',
'source': 'D:/v-zihuan/segmentation_with_scale/experiment/voc_part/list/train_3s.txt',
'mirror': True,
'crop_size': (505, 505)}
t = SimpleTransformer(params)
image = Image.open(r'D:/v-zihuan/segmentation_with_scale/experiment/voc_part/data/images/2008_000003.jpg')
label = Image.open(r'D:/v-zihuan/segmentation_with_scale/experiment/voc_part/data/part_mask_scale_3/2008_000003.png')
t.preprocess(image, label)