-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5e6b4a8
commit dd35e81
Showing
6 changed files
with
564 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
eval_checkpoint: "/vision-nfs/isola/projects/shobhita/code/dreamsim/dreamsim_steph/new_checkpoints/lora_single_clip_vitb32_embedding_lora_lr_0.0003_batchsize_32_wd_0.0_hiddensize_1_margin_0.05_lorar_16_loraalpha_8.0_loradropout_0.3/lightning_logs/version_0/checkpoints/clip_vitb32_lora/" | ||
eval_checkpoint_cfg: "/vision-nfs/isola/projects/shobhita/code/dreamsim/dreamsim_steph/new_checkpoints/lora_single_clip_vitb32_embedding_lora_lr_0.0003_batchsize_32_wd_0.0_hiddensize_1_margin_0.05_lorar_16_loraalpha_8.0_loradropout_0.3/lightning_logs/version_0/config.yaml" | ||
load_dir: "/vision-nfs/isola/projects/shobhita/code/dreamsim/models" | ||
|
||
baseline_model: "clip_vitb32" | ||
baseline_feat_type: "cls" | ||
baseline_stride: "32" | ||
|
||
nights_root: "/vision-nfs/isola/projects/shobhita/data/nights" | ||
bapps_root: "/vision-nfs/isola/projects/shobhita/data/2afc/val" | ||
things_root: "/vision-nfs/isola/projects/shobhita/data/things/things_src_images" | ||
things_file: "/vision-nfs/isola/projects/shobhita/data/things/things_valset.txt" | ||
df2_root: "/data/vision/phillipi/perception/data/df2_org3/" | ||
df2_gt: "/data/vision/phillipi/perception/code/repalignment/configs/df2_gt.json" | ||
|
||
batch_size: 256 | ||
num_workers: 10 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
from torch.utils.data import Dataset | ||
from util.utils import get_preprocess_fn | ||
from torchvision import transforms | ||
import pandas as pd | ||
import numpy as np | ||
from PIL import Image | ||
import os | ||
from typing import Callable | ||
import torch | ||
import glob | ||
|
||
IMAGE_EXTENSIONS = ["jpg", "png", "JPEG", "jpeg"] | ||
|
||
|
||
class ThingsDataset(Dataset): | ||
def __init__(self, root_dir: str, txt_file: str, preprocess: str, load_size: int = 224, | ||
interpolation: transforms.InterpolationMode = transforms.InterpolationMode.BICUBIC): | ||
with open(txt_file, "r") as f: | ||
self.txt = f.readlines() | ||
self.dataset_root = root_dir | ||
self.preprocess_fn = get_preprocess_fn(preprocess, load_size, interpolation) | ||
|
||
def __len__(self): | ||
return len(self.txt) | ||
|
||
def __getitem__(self, idx): | ||
im_1, im_2, im_3 = self.txt[idx].split() | ||
|
||
im_1 = Image.open(os.path.join(self.dataset_root, f"{im_1}.png")) | ||
im_2 = Image.open(os.path.join(self.dataset_root, f"{im_2}.png")) | ||
im_3 = Image.open(os.path.join(self.dataset_root, f"{im_3}.png")) | ||
|
||
im_1 = self.preprocess_fn(im_1) | ||
im_2 = self.preprocess_fn(im_2) | ||
im_3 = self.preprocess_fn(im_3) | ||
|
||
return im_1, im_2, im_3 | ||
|
||
|
||
|
||
class BAPPSDataset(Dataset): | ||
def __init__(self, root_dir: str, preprocess: str, load_size: int = 224, | ||
interpolation: transforms.InterpolationMode = transforms.InterpolationMode.BICUBIC): | ||
data_types = ["cnn", "traditional", "color", "deblur", "superres", "frameinterp"] | ||
|
||
self.preprocess_fn = get_preprocess_fn(preprocess, load_size, interpolation) | ||
self.judge_paths = [] | ||
self.p0_paths = [] | ||
self.p1_paths = [] | ||
self.ref_paths = [] | ||
|
||
for dt in data_types: | ||
list_dir = os.path.join(os.path.join(root_dir, dt), "judge") | ||
for fname in os.scandir(list_dir): | ||
self.judge_paths.append(os.path.join(list_dir, fname.name)) | ||
self.p0_paths.append(os.path.join(os.path.join(os.path.join(root_dir, dt), "p0"), fname.name.split(".")[0] + ".png")) | ||
self.p1_paths.append( | ||
os.path.join(os.path.join(os.path.join(root_dir, dt), "p1"), fname.name.split(".")[0] + ".png")) | ||
self.ref_paths.append( | ||
os.path.join(os.path.join(os.path.join(root_dir, dt), "ref"), fname.name.split(".")[0] + ".png")) | ||
|
||
def __len__(self): | ||
return len(self.judge_paths) | ||
|
||
def __getitem__(self, idx): | ||
judge = np.load(self.judge_paths[idx]) | ||
im_left = self.preprocess_fn(Image.open(self.p0_paths[idx])) | ||
im_right = self.preprocess_fn(Image.open(self.p1_paths[idx])) | ||
im_ref = self.preprocess_fn(Image.open(self.ref_paths[idx])) | ||
return im_ref, im_left, im_right, judge | ||
|
||
class DF2Dataset(torch.utils.data.Dataset): | ||
def __init__(self, root_dir, split: str, preprocess: str, load_size: int = 224, | ||
interpolation: transforms.InterpolationMode = transforms.InterpolationMode.BICUBIC): | ||
|
||
self.preprocess_fn = get_preprocess_fn(preprocess, load_size, interpolation) | ||
# self.preprocess_fn=preprocess | ||
self.paths = get_paths(os.path.join(root_dir, split)) | ||
|
||
def __len__(self): | ||
return len(self.paths) | ||
|
||
def __getitem__(self, idx): | ||
im_path = self.paths[idx] | ||
img = Image.open(im_path) | ||
img = self.preprocess_fn(img) | ||
return img, im_path | ||
|
||
def pil_loader(path): | ||
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) | ||
with open(path, 'rb') as f: | ||
img = Image.open(f) | ||
return img.convert('RGB') | ||
|
||
def get_paths(path): | ||
all_paths = [] | ||
for ext in IMAGE_EXTENSIONS: | ||
all_paths += glob.glob(os.path.join(path, f"**.{ext}")) | ||
return all_paths | ||
|
||
# class ImageDataset(torch.utils.data.Dataset): | ||
# def __init__(self, root, class_to_idx, transform=None, ret_path=False): | ||
# """ | ||
# :param root: Dataset root. Should follow the structure class1/0.jpg...n.jpg, class2/0.jpg...n.jpg | ||
# :param class_to_idx: dictionary mapping the classnames to integers. | ||
# :param transform: | ||
# :param ret_path: boolean indicating whether to return the image path or not (useful for KNN for plotting nearest neighbors) | ||
# """ | ||
|
||
# self.transform = transform | ||
# self.label_to_idx = class_to_idx | ||
|
||
# self.paths = [] | ||
# self.labels = [] | ||
# for cls in class_to_idx: | ||
# cls_paths = get_paths(os.path.join(root, cls)) | ||
# self.paths += cls_paths | ||
# self.labels += [self.label_to_idx[cls] for _ in cls_paths] | ||
|
||
# self.ret_path = ret_path | ||
|
||
# def __len__(self): | ||
# return len(self.paths) | ||
|
||
# def __getitem__(self, idx): | ||
# im_path, label = self.paths[idx], self.labels[idx] | ||
# img = pil_loader(im_path) | ||
|
||
# if self.transform is not None: | ||
# img = self.transform(img) | ||
# if not self.ret_path: | ||
# return img, label | ||
# else: | ||
# return img, label, im_path |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
from pytorch_lightning import seed_everything | ||
import torch | ||
from dataset.dataset import TwoAFCDataset | ||
from util.utils import get_preprocess | ||
from torch.utils.data import DataLoader | ||
import os | ||
import yaml | ||
import logging | ||
from training.train import LightningPerceptualModel | ||
from evaluation.score import score_nights_dataset, score_things_dataset, score_bapps_dataset, score_df2_dataset | ||
from evaluation.eval_datasets import ThingsDataset, BAPPSDataset, DF2Dataset | ||
from torchmetrics.functional import structural_similarity_index_measure, peak_signal_noise_ratio | ||
from DISTS_pytorch import DISTS | ||
from dreamsim import PerceptualModel | ||
from tqdm import tqdm | ||
import pickle | ||
import configargparse | ||
from dreamsim import dreamsim | ||
import clip | ||
from torchvision import transforms | ||
|
||
log = logging.getLogger("lightning.pytorch") | ||
log.propagate = False | ||
log.setLevel(logging.ERROR) | ||
|
||
def parse_args(): | ||
parser = configargparse.ArgumentParser() | ||
parser.add_argument('-c', '--config', required=False, is_config_file=True, help='config file path') | ||
|
||
## Run options | ||
parser.add_argument('--seed', type=int, default=1234) | ||
|
||
## Checkpoint evaluation options | ||
parser.add_argument('--eval_checkpoint', type=str, help="Path to a checkpoint root.") | ||
parser.add_argument('--eval_checkpoint_cfg', type=str, help="Path to checkpoint config.") | ||
parser.add_argument('--load_dir', type=str, default="./models", help='path to pretrained ViT checkpoints.') | ||
|
||
## Baseline evaluation options | ||
parser.add_argument('--baseline_model', type=str, default=None) | ||
parser.add_argument('--baseline_feat_type', type=str, default=None) | ||
parser.add_argument('--baseline_stride', type=str, default=None) | ||
|
||
## Dataset options | ||
parser.add_argument('--nights_root', type=str, default='./dataset/nights', help='path to nights dataset.') | ||
parser.add_argument('--bapps_root', type=str, default='./dataset/bapps', help='path to bapps images.') | ||
parser.add_argument('--things_root', type=str, default='./dataset/things/things_imgs', help='path to things images.') | ||
parser.add_argument('--things_file', type=str, default='./dataset/things/things_trainset.txt', help='path to things info file.') | ||
parser.add_argument('--df2_root', type=str, default='./dataset/df2', help='path to df2 root.') | ||
parser.add_argument('--df2_gt', type=str, default='./dataset/df2/df2_gt.json', help='path to df2 ground truth json.') | ||
parser.add_argument('--num_workers', type=int, default=16) | ||
parser.add_argument('--batch_size', type=int, default=4, help='dataset batch size.') | ||
|
||
return parser.parse_args() | ||
|
||
def load_dreamsim_model(args, device="cuda"): | ||
with open(os.path.join(args.eval_checkpoint_cfg), "r") as f: | ||
cfg = yaml.load(f, Loader=yaml.Loader) | ||
|
||
model_cfg = vars(cfg) | ||
model_cfg['load_dir'] = args.load_dir | ||
model = LightningPerceptualModel(**model_cfg) | ||
model.load_lora_weights(args.eval_checkpoint) | ||
model = model.perceptual_model.to(device) | ||
preprocess = "DEFAULT" | ||
return model, preprocess | ||
|
||
|
||
def load_baseline_model(args, device="cuda"): | ||
model = PerceptualModel(model_type=args.baseline_model, feat_type=args.baseline_feat_type, stride=args.baseline_stride, baseline=True, load_dir=args.load_dir) | ||
model = model.to(device) | ||
preprocess = "DEFAULT" | ||
return model, preprocess | ||
# clip_transform = transforms.Compose([ | ||
# transforms.Resize((224,224), interpolation=transforms.InterpolationMode.BICUBIC), | ||
# # transforms.CenterCrop(224), | ||
# lambda x: x.convert('RGB'), | ||
# transforms.ToTensor(), | ||
# transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | ||
# ]) | ||
# model, preprocess = clip.load("ViT-B/32", device=device) | ||
# model.visual.ln_post = torch.nn.Identity() | ||
# return model, clip_transform | ||
|
||
def eval_nights(model, preprocess, device, args): | ||
eval_results = {} | ||
val_dataset = TwoAFCDataset(root_dir=args.nights_root, split="val", preprocess=preprocess) | ||
test_dataset_imagenet = TwoAFCDataset(root_dir=args.nights_root, split="test_imagenet", preprocess=preprocess) | ||
test_dataset_no_imagenet = TwoAFCDataset(root_dir=args.nights_root, split="test_no_imagenet", preprocess=preprocess) | ||
total_length = len(test_dataset_no_imagenet) + len(test_dataset_imagenet) | ||
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) | ||
test_imagenet_loader = DataLoader(test_dataset_imagenet, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) | ||
test_no_imagenet_loader = DataLoader(test_dataset_no_imagenet, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) | ||
|
||
val_score = score_nights_dataset(model, val_loader, device) | ||
imagenet_score = score_nights_dataset(model, test_imagenet_loader, device) | ||
no_imagenet_score = score_nights_dataset(model, test_no_imagenet_loader, device) | ||
|
||
eval_results['nights_val'] = val_score.item() | ||
eval_results['nights_imagenet'] = imagenet_score.item() | ||
eval_results['nights_no_imagenet'] = no_imagenet_score.item() | ||
eval_results['nights_total'] = (imagenet_score.item() * len(test_dataset_imagenet) + | ||
no_imagenet_score.item() * len(test_dataset_no_imagenet)) / total_length | ||
logging.info(f"Combined 2AFC score: {str(eval_results['nights_total'])}") | ||
return eval_results | ||
|
||
def eval_bapps(model, preprocess, device, args): | ||
test_dataset_bapps = BAPPSDataset(root_dir=args.bapps_root, preprocess=preprocess) | ||
test_loader_bapps = DataLoader(test_dataset_bapps, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) | ||
bapps_score = score_bapps_dataset(model, test_loader_bapps, device) | ||
return {"bapps_total": bapps_score} | ||
|
||
def eval_things(model, preprocess, device, args): | ||
test_dataset_things = ThingsDataset(root_dir=args.things_root, txt_file=args.things_file, preprocess=preprocess) | ||
test_loader_things = DataLoader(test_dataset_things, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) | ||
things_score = score_things_dataset(model, test_loader_things, device) | ||
return {"things_total": things_score} | ||
|
||
def eval_df2(model, preprocess, device, args): | ||
train_dataset = DF2Dataset(root_dir=args.df2_root, split="gallery", preprocess=preprocess) | ||
test_dataset = DF2Dataset(root_dir=args.df2_root, split="customer", preprocess=preprocess) | ||
train_loader_df2 = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers,pin_memory=True) | ||
test_loader_df2 = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers,pin_memory=True) | ||
df2_score = score_df2_dataset(model, train_loader_df2, test_loader_df2, args.df2_gt, device) | ||
return {"df2_total": df2_score} | ||
|
||
def run(args, device): | ||
logging.basicConfig(filename=os.path.join(args.eval_checkpoint, 'eval.log'), level=logging.INFO, force=True) | ||
seed_everything(args.seed) | ||
g = torch.Generator() | ||
g.manual_seed(args.seed) | ||
|
||
eval_model, preprocess = load_dreamsim_model(args) | ||
nights_results = eval_nights(eval_model, preprocess, device, args) | ||
bapps_results = eval_bapps(eval_model, preprocess, device, args) | ||
things_results = eval_things(eval_model, preprocess, device, args) | ||
df2_results = eval_df2(eval_model, preprocess, device, args) | ||
|
||
if "baseline_model" in args: | ||
baseline_model, baseline_preprocess = load_baseline_model(args) | ||
nights_results = eval_nights(baseline_model, baseline_preprocess, device, args) | ||
bapps_results = eval_bapps(baseline_model, baseline_preprocess, device, args) | ||
things_results = eval_things(baseline_model, baseline_preprocess, device, args) | ||
df2_results = eval_df2(baseline_model, baseline_preprocess, device, args) | ||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
run(args, device) | ||
|
Oops, something went wrong.