-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathnet.py
616 lines (514 loc) · 27.2 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import os
import time
import numpy as np
import tensorflow as tf
import progressbar
from utils import average_precision, iou_t
class DCGANCycEncDecRandomVP(object):
name = "gan_cyc_encdec_randomvp"
def __init__(self, g_net, e_net, d_net, x_sampler, z_sampler, val_sampler,
prefix, config, verbose=1):
self.g_net = g_net
self.e_net = e_net
self.d_net = d_net
self.x_sampler = x_sampler
self.z_sampler = z_sampler
self.v_sampler = val_sampler
self.prefix = prefix
self.config = config
self.verbose = verbose
# Input variables
encdec_inputs, gan_inputs = self.x_sampler(self.config.batch_size)
self.x_1 = encdec_inputs['img_1']
self.x_2 = encdec_inputs['img_2']
self.x_3 = gan_inputs['img']
self.y_1 = encdec_inputs['pos_1']
self.y_2 = encdec_inputs['pos_2']
self.z = self.z_sampler(self.config.batch_size, self.g_net.z_dim)
self.is_training = tf.placeholder(tf.bool, name='is_training')
# Summary list
self.auto_summary_lst = []
self.gan_summary_lst = []
self.x_, _ = self.g_net(self.z, self.is_training)
self.d = self.d_net(self.x_3, is_training=self.is_training) # discriminate real
self.d_ = self.d_net(self.x_, is_training=self.is_training) # discriminate fake
self.gan_summary_lst.append(tf.summary.image("gan_fake", self.x_, max_outputs=12))
self.gan_summary_lst.append(tf.summary.image("gan_real", self.x_3, max_outputs=12))
# Adding Encoder pass on top of he GAN training
self.gan_pred_noise, self.gan_pred_logits = self.e_net(self.x_, self.is_training)
self.gan_summary_lst.append(tf.summary.histogram("sample_z", self.z))
# build GAN losses
if self.config.gan_loss_type == 'DCGAN':
gan_losses = self._build_nonsaturating_gan_objective_(
self.d, self.d_, self.x_3, self.x_)
elif self.config.gan_loss_type == 'LSGAN':
gan_losses = self._build_least_square_gan_objective_(
self.d, self.d_, self.x_3, self.x_)
else:
raise Exception("Invalid gan type:%s"%self.config.gan_loss_type)
self.g_loss = gan_losses['g_loss']
self.d_loss = gan_losses['d_loss']
self.d_acc = gan_losses['d_acc']
########################################
# Building graph Cycle Encoder-Decoder #
########################################
self.pred_noise_1, self.pred_logits_1 = self.e_net(self.x_1, self.is_training)
self.pred_noise_2, self.pred_logits_2 = self.e_net(self.x_2, self.is_training)
self.val_z_1 = self.make_generator_noise(self.pred_noise_1, self.y_2)
self.val_z_2 = self.make_generator_noise(self.pred_noise_2, self.y_1)
self.val_imgs_1, self.val_vox_1 = self.g_net(self.val_z_1, self.is_training)
self.val_imgs_2, self.val_vox_2 = self.g_net(self.val_z_2, self.is_training)
if self.config.use_auto_d_update:
self.d_val = self.d_net(self.val_imgs, is_training=self.is_training)
self.auto_summary_lst.append(tf.summary.histogram("val_z_1", self.val_z_1))
self.auto_summary_lst.append(tf.summary.histogram("val_z_2", self.val_z_2))
self.auto_summary_lst.append(
tf.summary.image("val_fake_1", self.val_imgs_1, max_outputs=12))
self.auto_summary_lst.append(
tf.summary.image("val_fake_2", self.val_imgs_2, max_outputs=12))
self.auto_summary_lst.append(tf.summary.image("real_1", self.x_1, max_outputs=12))
self.auto_summary_lst.append(tf.summary.image("real_2", self.x_2, max_outputs=12))
#######################################
# Building loss Cycle Encoder-Decoder #
#######################################
def build_content_loss(x, y):
ret = 0.
if 'l1' in self.config.img_loss_types:
ret += tf.reduce_mean(tf.abs(x - y))
if 'l2' in self.config.img_loss_types:
ret += tf.reduce_mean(tf.losses.mean_squared_error(x, y))
return ret
self.loss_content = build_content_loss(self.x_1, self.val_imgs_2) \
+ build_content_loss(self.x_2, self.val_imgs_1)
# TODO: add quaternion loss
# def build_clf_loss(labels, logits):
# return tf.reduce_mean(
# tf.nn.softmax_cross_entropy_with_logits(
# logits=logits, labels=labels))
# self.loss_clf = build_clf_loss(self.y_1, self.pred_logits_1) \
# + build_clf_loss(self.y_2, self.pred_logits_2)
self.pose_inv_loss = tf.reduce_mean(
tf.losses.mean_squared_error(self.pred_noise_1, self.pred_noise_2))
self.vox_inv_loss = 0
print("Building voxel invariant loss:%s"%self.config.vox_inv_loss_types)
if 'l2' in self.config.vox_inv_loss_types:
print("Added L2 loss")
self.vox_inv_loss += tf.reduce_mean(
tf.losses.mean_squared_error(self.val_vox_1, self.val_vox_2)
) * self.config.vox_inv_loss_types['l2']
if 'l1' in self.config.vox_inv_loss_types:
print("Added L1 loss")
self.vox_inv_loss += tf.reduce_mean(
tf.losses.absolute_difference(self.val_vox_1, self.val_vox_2)
) * self.config.vox_inv_loss_types['l1']
self.loss = 0
if self.config.content_loss_weight > 0:
self.loss += self.loss_content * self.config.content_loss_weight
if self.config.pose_inv_loss_weight > 0:
self.loss += self.pose_inv_loss * self.config.pose_inv_loss_weight
if self.config.vox_inv_loss_weight > 0:
self.loss += self.vox_inv_loss * self.config.vox_inv_loss_weight
self.auto_summary_lst.append(tf.summary.scalar('loss', self.loss))
self.auto_summary_lst.append(tf.summary.scalar('content_loss', self.loss_content))
if self.config.pose_inv_loss_weight > 0:
self.auto_summary_lst.append(tf.summary.scalar('pose_inv_loss', self.pose_inv_loss))
if self.config.vox_inv_loss_weight > 0:
self.auto_summary_lst.append(tf.summary.scalar('vox_inv_loss', self.vox_inv_loss))
if self.config.use_auto_d_update:
self.loss_adv = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.d_val, labels=tf.ones_like(self.d_val)
))
# Build adversarial loss for the GAN
self.auto_d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.d_val, labels=tf.zeros_like(self.d_val)
))
self.auto_d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.d, labels=tf.ones_like(self.d)
)) # use exactly the same batch as the GAN pass.
self.auto_d_loss = 0.5 * (self.auto_d_loss_fake + self.auto_d_loss_real)
self.auto_gp = self._build_gp(self.x_3, self.x_)
self.auto_d_loss += self.config.scale*self.auto_gp
self.auto_summary_lst.append(tf.summary.scalar("auto_gp", self.auto_gp))
self.auto_d_acc = 0.5 * tf.reduce_mean(tf.cast(self.d_val < 0, tf.float32)) \
+ 0.5 * tf.reduce_mean(tf.cast(self.d >= 0, tf.float32))
self.loss += self.loss_adv * self.config.adv_loss_weight
self.auto_summary_lst.append(tf.summary.scalar('adv_loss', self.loss_adv))
self.auto_summary_lst.append(tf.summary.scalar('auto_d_acc', self.auto_d_acc))
self.auto_summary_lst.append(tf.summary.scalar('auto_d_loss', self.auto_d_loss))
if self.verbose > 1:
for v in self.g_net.vars:
s = tf.summary.histogram(v.name, v)
self.gan_summary_lst.append(s)
self.auto_summary_lst.append(s)
for v in self.e_net.vars:
self.auto_summary_lst.append(tf.summary.histogram(v.name, v))
for v in self.d_net.vars:
self.gan_summary_lst.append(tf.summary.histogram(v.name, v))
self._build_optimizer()
self._build_validation_pass_()
# Other options
gpu_options = tf.GPUOptions(allow_growth=True)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
self.gan_summary = tf.summary.merge(self.gan_summary_lst)
self.auto_summary = tf.summary.merge(self.auto_summary_lst)
self.log_dir = "log/train_%s/%s"%(self.name, self.prefix)
if os.path.isdir(self.log_dir):
raise Exception("Log path :%s already exists"%self.log_dir)
else:
os.makedirs(self.log_dir)
self.log_writer = tf.summary.FileWriter(self.log_dir, self.sess.graph)
self.saver = tf.train.Saver()
self.best_max_iou_saver = tf.train.Saver(max_to_keep=1)
self.best_avg_prc_saver = tf.train.Saver(max_to_keep=1)
self.best_iou_t04_saver = tf.train.Saver(max_to_keep=1)
self.best_iou_t05_saver = tf.train.Saver(max_to_keep=1)
def _build_optimizer(self):
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
print("Building optimizers...")
print("\tE lr:%.10f"%self.config.e_lr)
print("\tD lr:%.10f"%self.config.d_lr)
print("\tG lr:%.10f"%self.config.g_lr)
print("\tOptimizer type:%s"%self.config.optimizer_type)
self.e_global_steps = tf.Variable(0, trainable=False)
self.e_decayed_lr = tf.train.exponential_decay(
self.config.e_lr, self.e_global_steps,
self.config.decay_steps, self.config.decay_rate, staircase=True)
if self.config.optimizer_type.lower() == 'adam':
self.e_opt = tf.train.AdamOptimizer(learning_rate=self.e_decayed_lr)
elif self.config.optimizer_type.lower() == 'rmsprop':
self.e_opt = tf.train.RMSPropOptimizer(learning_rate=self.e_decayed_lr)
self.auto_e_adam = self.e_opt.minimize(
self.loss, var_list=self.e_net.vars, global_step=self.e_global_steps)
if self.config.enc_content_loss_weight > 0 or self.config.enc_clf_loss_weight > 0:
self.gan_e_adam = self.e_opt.minimize(
self.gan_enc_loss, var_list=self.e_net.vars,
global_step=self.e_global_steps)
self.d_global_steps = tf.Variable(0, trainable=False)
self.d_decayed_lr = tf.train.exponential_decay(
self.config.d_lr, self.d_global_steps,
self.config.decay_steps, self.config.decay_rate, staircase=True)
if self.config.optimizer_type.lower() == 'adam':
self.d_opt = tf.train.AdamOptimizer(
learning_rate=self.d_decayed_lr, beta1=0.5, beta2=0.9
)
elif self.config.optimizer_type.lower() == 'rmsprop':
self.d_opt = tf.train.RMSPropOptimizer(learning_rate=self.d_decayed_lr)
self.gan_d_adam = self.d_opt.minimize(
self.d_loss, var_list=self.d_net.vars, global_step=self.d_global_steps)
if self.config.use_auto_d_update:
self.auto_d_adam = self.d_opt.minimize(
self.auto_d_loss, var_list=self.d_net.vars,
global_step=self.d_global_steps)
self.g_global_steps = tf.Variable(0, trainable=False)
self.g_decayed_lr = tf.train.exponential_decay(
self.config.g_lr, self.g_global_steps, self.config.decay_steps,
self.config.decay_rate, staircase=True)
if self.config.optimizer_type.lower() == 'adam':
self.g_opt = tf.train.AdamOptimizer(
learning_rate=self.g_decayed_lr, beta1=0.5, beta2=0.9
)
elif self.config.optimizer_type.lower() == 'rmsprop':
self.g_opt = tf.train.RMSPropOptimizer(learning_rate=self.g_decayed_lr)
self.gan_g_adam = self.g_opt.minimize(
self.g_loss, var_list=self.g_net.vars, global_step=self.g_global_steps)
self.auto_g_adam = self.g_opt.minimize(
self.loss, var_list=self.g_net.vars, global_step=self.g_global_steps)
self.auto_summary_lst.append(
tf.summary.scalar('e_global_steps', self.e_global_steps))
self.auto_summary_lst.append(
tf.summary.scalar('d_global_steps', self.d_global_steps))
self.auto_summary_lst.append(
tf.summary.scalar('g_global_steps', self.g_global_steps))
self.auto_summary_lst.append(tf.summary.scalar('e_decayed_lr', self.e_decayed_lr))
self.auto_summary_lst.append(tf.summary.scalar('d_decayed_lr', self.d_decayed_lr))
self.auto_summary_lst.append(tf.summary.scalar('g_decayed_lr', self.g_decayed_lr))
def _build_least_square_gan_objective_(self,
d_real, d_fake, x_real, x_fake, a=0, b=1, c=1):
d_fake = tf.sigmoid(d_fake)
d_real = tf.sigmoid(d_real)
d_loss_fake = tf.reduce_mean(tf.square(d_fake - a))
d_loss_real = tf.reduce_mean(tf.square(d_real - b))
d_loss = 0.5 * (d_loss_fake + d_loss_real)
g_loss = 0.5 * tf.reduce_mean(tf.square(d_fake - c))
d_acc = 0.5 * tf.reduce_mean(tf.cast(d_fake < (a + b)/2., tf.float32)) \
+ 0.5 * tf.reduce_mean(tf.cast(d_real >= (a + b)/2., tf.float32))
self.gan_summary_lst.append(tf.summary.scalar("d_loss_real", d_loss_real))
self.gan_summary_lst.append(tf.summary.scalar("d_loss_fake", d_loss_fake))
self.gan_summary_lst.append(tf.summary.scalar("d_loss", d_loss))
self.gan_summary_lst.append(tf.summary.scalar("d_acc", d_acc))
self.gan_summary_lst.append(tf.summary.scalar("g_loss", g_loss))
return {
"d_loss" : d_loss,
"g_loss" : g_loss,
"d_acc" : d_acc,
}
def _build_nonsaturating_gan_objective_(self, d, d_, x, x_):
######################################
# Normal nonsatruating GAN objective #
######################################
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_, labels=tf.ones_like(d_)
))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_, labels=tf.zeros_like(d_)
))
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d, labels=tf.ones_like(d)
))
d_loss = 0.5 * (d_loss_fake + d_loss_real)
self.gan_gp = self._build_gp(x, x_)
d_loss += self.config.scale*self.gan_gp
self.gan_summary_lst.append(tf.summary.scalar("gan_gp", self.gan_gp))
d_acc = 0.5 * tf.reduce_mean(tf.cast(d_ < 0, tf.float32)) \
+ 0.5 * tf.reduce_mean(tf.cast(d >= 0, tf.float32))
self.gan_summary_lst.append(tf.summary.scalar("d_loss_real", d_loss_real))
self.gan_summary_lst.append(tf.summary.scalar("d_loss_fake", d_loss_fake))
self.gan_summary_lst.append(tf.summary.scalar("d_loss", d_loss))
self.gan_summary_lst.append(tf.summary.scalar("d_acc", d_acc))
self.gan_summary_lst.append(tf.summary.scalar("g_loss", g_loss))
return {
"d_loss" : d_loss,
"g_loss" : g_loss,
"d_acc" : d_acc,
}
def _build_validation_pass_(self):
###################
# validation pass #
###################
# self.val_pos_acc = tf.placeholder(tf.float32)
self.val_max_iou = tf.placeholder(tf.float32)
self.val_t04_iou = tf.placeholder(tf.float32)
self.val_t05_iou = tf.placeholder(tf.float32)
self.val_avg_prc = tf.placeholder(tf.float32)
self.val_iou_thr = tf.placeholder(tf.float32)
self.val_max_iou_best = tf.placeholder(tf.float32)
self.val_t04_iou_best = tf.placeholder(tf.float32)
self.val_t05_iou_best = tf.placeholder(tf.float32)
self.val_avg_prc_best = tf.placeholder(tf.float32)
self.val_iou_thr_best = tf.placeholder(tf.float32)
# Validation pass
self.val_init, val_inputs = self.v_sampler(self.config.batch_size)
self.x_val_1 = val_inputs["image"]
self.y_val_1 = val_inputs["pose"]
self.val_vox = val_inputs["vox"]
self.val_pass_noise, self.val_pass_pose_logits = self.e_net(
self.x_val_1, self.is_training)
self.val_pass_z = self.make_generator_noise(self.val_pass_noise, self.y_val_1)
_, self.val_pass_vox = self.g_net(self.val_pass_z, self.is_training)
val_lst = []
val_lst.append(tf.summary.scalar("val_max_iou", self.val_max_iou))
val_lst.append(tf.summary.scalar("val_t04_iou", self.val_t04_iou))
val_lst.append(tf.summary.scalar("val_t05_iou", self.val_t05_iou))
val_lst.append(tf.summary.scalar("val_avg_prc", self.val_avg_prc))
val_lst.append(tf.summary.scalar("val_iou_thr", self.val_iou_thr))
val_lst.append(tf.summary.scalar("val_max_iou_best", self.val_max_iou_best))
val_lst.append(tf.summary.scalar("val_t04_iou_best", self.val_t04_iou_best))
val_lst.append(tf.summary.scalar("val_t05_iou_best", self.val_t05_iou_best))
val_lst.append(tf.summary.scalar("val_avg_prc_best", self.val_avg_prc_best))
val_lst.append(tf.summary.scalar("val_iou_thr_best", self.val_iou_thr_best))
self.val_summary = tf.summary.merge(val_lst)
def make_generator_noise(self, noise_t, pose_t):
"""
Args:
[noise_t] the noise tensor encoder generated.
[pose_t] the ground truth pose (in rotation degrees)
"""
return tf.concat([noise_t, pose_t], axis=1)
def _build_gp(self, x_real, x_fake):
# For GAN part: x_fake = self.x_, x_real=self.x_3
# Compute gradient penalety
if self.config.gp == 'wgan':
alpha = tf.random_uniform(
shape=[self.config.batch_size,1],
minval=0.,
maxval=1.
)
fake_data = tf.reshape(x_fake, [self.config.batch_size, -1])
real_data = tf.reshape(x_real, [self.config.batch_size, -1])
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(self.d_net(interpolates), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
return gradient_penalty
elif self.config.gp == 'dragan':
real_data = tf.reshape(x_real, [self.config.batch_size, -1])
# TODO: stddev here should be hyperparam
noise = tf.random_normal(shape=real_data.get_shape(),
mean=0., stddev=10/255.)
x_noise = real_data + noise
gradients = tf.gradients(self.d_net(x_noise), [x_noise])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
return gradient_penalty
else:
print("No gradient panelty")
gradient_penalty = 0
return gradient_penalty
def _sample_data(self, is_training=True):
return {self.is_training : is_training}
def _gan_step(self, update_g=True, update_d=True, update_e=True):
if self.gan_t % 100 == 0 or self.gan_t < 250:
feed_dict = self._sample_data()
d_acc, d_loss, g_loss, summary = self.sess.run(
[self.d_acc, self.d_loss, self.g_loss, self.gan_summary],
feed_dict
)
self.log_writer.add_summary(summary, self.gan_t)
print('Iter [%8d] Time [%5.4f] d_loss [%.4f] g_loss [%.4f] d_acc [%.4f]' %
(self.gan_t, time.time() - self.start_time, d_loss, g_loss, d_acc))
if self.gan_t > 0 and update_g:
for _ in range((self.config.g_iters)(self.gan_t)):
self.sess.run([self.gan_g_adam], feed_dict=self._sample_data())
if update_e:
if self.config.enc_content_loss_weight > 0 or self.config.enc_clf_loss_weight > 0:
self.sess.run([self.gan_e_adam], feed_dict=self._sample_data())
if update_d:
for _ in range((self.config.d_iters)(self.gan_t)):
feed_dict = self._sample_data()
d_acc = self.sess.run(self.d_acc, feed_dict)
if d_acc < self.config.max_d_acc:
self.sess.run([self.gan_d_adam], feed_dict)
self.gan_t += 1
def _autoencoder_step(self, update_g=True, update_e=True, update_d=True):
# Train AutoEncoder
feed_dict = self._sample_data()
if self.encdec_t < 250 or self.encdec_t % 100 == 0:
loss, content_loss, summary = self.sess.run(
[self.loss, self.loss_content, self.auto_summary],
feed_dict
)
self.log_writer.add_summary(summary, self.encdec_t)
print('Iter [%8d] Time [%5.4f] loss [%.4f] content [%.4f]' \
% (self.encdec_t, time.time() - self.start_time, loss, content_loss))
# Update AutoEncoder
if update_e:
self.sess.run(self.auto_e_adam, feed_dict)
if update_g:
self.sess.run(self.auto_g_adam, feed_dict)
if self.config.use_auto_d_update and update_d:
self.sess.run(self.auto_d_adam, feed_dict)
self.encdec_t += 1
def _save_model(self, t, saver=None, prefix="model"):
save_path = os.path.join(self.log_dir, "%s-%d.ckpt"%(prefix, t))
if saver == None:
saver = self.saver
saver.save(self.sess, save_path)
def _initialize_training(self):
self.t = 0
self.gan_t = 0
self.encdec_t = 0
self.max_ap, self.max_iou_max, self.max_iou_t4, self.max_iou_t5 = 0., 0., 0., 0.
self.max_iou_thr = -1.
self.sess.run(tf.global_variables_initializer())
self.start_time = time.time()
def train(self, num_batches=1000000, num_autoencoder_iters=1, num_gan_iters=1,
max_validation_batches=None, resume=None,
update_g=True, update_d=True, update_e=True):
self._initialize_training()
print("Start training")
self._save_model(self.t) # first one for sanity check and fail early
print("Resume=%s"%resume)
if resume != None:
print("Resume from %s"%resume)
self.saver.restore(self.sess, resume)
self.validation(max_validation_batches, self.t)
while self.t < num_batches:
for _ in range(num_autoencoder_iters):
self._autoencoder_step(update_g=update_g, update_d=update_d, update_e=update_e)
self.t += 1
# Save model
if self.t % 1000 == 0: # just to remind me :)
self._save_model(self.t)
if self.t % self.config.validation_interval == 0:
print("Model:%s"%self.log_dir)
self.validation(max_validation_batches, self.t)
for _ in range(num_gan_iters):
self._gan_step(update_g=update_g, update_d=update_d, update_e=update_e)
self.t += 1
# Save model
if self.t % 1000 == 0: # just to remind me :)
print("Model:%s"%self.log_dir)
# if (self.t % 2000 == 0 and self.t < 10000) or self.t % 5000 == 0:
if self.t % self.config.validation_interval == 0:
self._save_model(self.t)
self.validation(max_validation_batches, self.t)
def validation(self, max_validation_batches, t):
print("="*80)
print("Validation:")
num_batches = 0
ap = 0
iou_t4 = 0
iou_t5 = 0
ts = np.arange(0., 1., 1e-1)
iou_max = np.zeros(ts.shape)
pbar = progressbar.ProgressBar(maxval=progressbar.UnknownLength)
self.sess.run(self.val_init)
try:
while True:
vox_p, vox_1 = self.sess.run(
[self.val_pass_vox, self.val_vox],
feed_dict = {self.is_training : False}
)
ious = []
for t in ts:
iou = iou_t(vox_1, vox_p, threshold=t).mean()
ious.append(iou)
iou_max += np.array(ious)
ap += average_precision(vox_1, vox_p)
iou_t4 += iou_t(vox_1, vox_p, threshold=0.4).mean()
iou_t5 += iou_t(vox_1, vox_p, threshold=0.5).mean()
num_batches += 1
pbar.update(num_batches)
if num_batches == max_validation_batches:
break
except tf.errors.OutOfRangeError:
print("End of validation dataset")
# # pos_acc /= float(num_batches)
iou_t4 /= float(num_batches)
iou_t5 /= float(num_batches)
ap /= float(num_batches)
iou_max /= float(num_batches)
iou_thr = iou_max.argmax() * (1/float(len(iou_max)))
iou_max = iou_max.max()
print("Performance (this pass)")
print("\tAP:%.5f\tMaxIoU:%.5f\tIoU(t>0.4):%.5f\tIoU(t>0.5):%.5f"\
%(ap, iou_max, iou_t4, iou_t5))
if ap > self.max_ap:
self.max_ap = ap
print("New best avg prc:%.5f"%self.max_ap)
self._save_model(self.t, saver=self.best_avg_prc_saver, prefix="model-best-avgprc")
if iou_max > self.max_iou_max:
self.max_iou_max = iou_max
self.max_iou_thr = iou_thr
print("New best max iou:%.5f, %.5f"%(self.max_iou_max, self.max_iou_thr))
self._save_model(self.t, saver=self.best_max_iou_saver, prefix="model-best-maxiou")
if iou_t4 > self.max_iou_t4:
self.max_iou_t4 = iou_t4
print("New best IoU(t04):%.5f"%self.max_iou_t4)
self._save_model(self.t, saver=self.best_iou_t04_saver, prefix="model-best-iout04")
if iou_t5 > self.max_iou_t5:
self.max_iou_t5 = iou_t5
print("New best IoU(t05):%.5f"%self.max_iou_t5)
self._save_model(self.t, saver=self.best_iou_t05_saver, prefix="model-best-iout05")
print("Performance (best pass)")
print("\tAP:%.5f\tMaxIoU:%.5f\tIoU(t>0.4):%.5f\tIoU(t>0.5):%.5f"\
%(self.max_ap, self.max_iou_max, self.max_iou_t4, self.max_iou_t5))
val_summary = self.sess.run(self.val_summary, feed_dict = {
self.val_max_iou : iou_max,
self.val_t04_iou : iou_t4,
self.val_t05_iou : iou_t5,
self.val_avg_prc : ap,
self.val_iou_thr : iou_thr,
self.val_max_iou_best : self.max_iou_max,
self.val_t04_iou_best : self.max_iou_t4,
self.val_t05_iou_best : self.max_iou_t5,
self.val_avg_prc_best : self.max_ap,
self.val_iou_thr_best : self.max_iou_thr
})
self.log_writer.add_summary(val_summary, self.t)
print("="*80)
return ap, iou_max, iou_t4, iou_t5