-
Notifications
You must be signed in to change notification settings - Fork 9
/
main_cifar.py
executable file
·496 lines (389 loc) · 19.6 KB
/
main_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import torch
torch.backends.cudnn.benchmark=True
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
import torch.nn.init as init
import torchvision.transforms as transforms
import argparse
import os
from PIL import Image
import scipy.misc
import random
import copy
import math
import numpy as np
from data.data_loader import cifar10, cifar100, ExemplarDataset
from lib.util import moment_update, TransformTwice, weight_norm, mixup_data, mixup_criterion, LabelSmoothingCrossEntropy
from lib.augment.cutout import Cutout
from lib.augment.autoaugment_extra import CIFAR10Policy
from models import *
compute_means=True
exemplar_means_= []
avg_acc = []
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# training hyperparameters
parser.add_argument('--batch-size', type=int, default=100, help='batch_size')
parser.add_argument('--num-workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=120, help='number of training epochs')
parser.add_argument('--epochs-sd', type=int, default=70, help='number of training epochs for self-distillation')
parser.add_argument('--val-freq', type=int, default=10, help='validation frequency')
# incremental learning
parser.add_argument('--new-classes', type=int, default=10, help='number of classes in new task')
parser.add_argument('--start-classes', type=int, default=50, help='number of classes in old task')
parser.add_argument('--K', type=int, default=2000, help='2000 exemplars for CIFAR-100')
# optimization
parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
parser.add_argument('--lr-min', type=float, default=0.0001, help='lower end of cosine decay')
parser.add_argument('--lr-sd', type=float, default=0.1, help='learning rate for self-distillation')
parser.add_argument('--lr-ft', type=float, default=0.01, help='learning rate for task-2 onwards')
parser.add_argument('--weight-decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('--cosine', action='store_true', help='use cosine learning rate')
# root folders
parser.add_argument('--data-root', type=str, default='./data', help='root directory of dataset')
parser.add_argument('--output-root', type=str, default='./output', help='root directory for output')
# save and load
parser.add_argument('--exp-name', type=str, default='kd', help='experiment name')
parser.add_argument('--resume', action='store_true', help='use class moco')
parser.add_argument('--resume-path', type=str, default='./checkpoint_0.pth',)
parser.add_argument('--save', action='store_true', help='to save checkpoint')
# loss function
parser.add_argument('--pow', type=float, default=0.66, help='hyperparameter of adaptive weight')
parser.add_argument('--lamda', type=float, default=5, help='weighting of classification and distillation')
parser.add_argument('--lamda-sd', type=float, default=10, help='weighting of classification and distillation')
parser.add_argument('--const-lamda', action='store_true', help='use constant lamda value, default: adaptive weighting')
parser.add_argument('--w-cls', type=float, default=1.0, help='weightage of new classification loss')
# kd loss
parser.add_argument('--kd', action='store_true', help='use kd loss')
parser.add_argument('--w-kd', type=float, default=1.0, help='weightage of knowledge distillation loss')
parser.add_argument('--T', type=float, default=2, help='temperature scaling for KD')
parser.add_argument('--T-sd', type=float, default=2, help='temperature scaling for KD')
# self-distillation
parser.add_argument('--num-sd', type=int, default=0, help='number of self-distillation generations')
parser.add_argument('--sd-factor', type=float, default=5.0, help='weighting between classification and distillation')
# mixup
parser.add_argument('--mixup', action='store_true', help='use mixup augmentation')
parser.add_argument('--mixup-alpha', type=float, default=0.1, help='mixup alpha value')
# label smoothing
parser.add_argument('--label-smoothing', action='store_true', help='use label smoothing')
parser.add_argument('--smoothing-alpha', type=float, default=0.1, help='label smoothing alpha value')
# heave augmentation (Auto Augment)
parser.add_argument('--aug', action='store_true', help='use heavy augmentation')
parser.add_argument('--tsne', action='store_true', help='plot tsne after each incremental step')
args = parser.parse_args()
return args
def train(model, old_model, epoch, lr, tempature, lamda, train_loader, use_sd, checkPoint):
tolerance_cnt = 0
step = 0
best_acc = 0
T = args.T
model.cuda()
old_model.cuda()
criterion_ce = nn.CrossEntropyLoss(ignore_index=-1)
criterion_ce_smooth = LabelSmoothingCrossEntropy() # for label smoothing
# reduce learning rate after first epoch (LowLR)
if len(test_classes) // CLASS_NUM_IN_BATCH > 1:
lr = args.lr_ft
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=args.weight_decay)
if len(test_classes) // CLASS_NUM_IN_BATCH ==1 and use_sd ==True:
if args.cosine:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epoch, eta_min=0.001)
else:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60], gamma=0.1)
else:
if args.cosine:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epoch, eta_min=args.lr_min)
else:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60, 90], gamma=0.1)
if len(test_classes) // CLASS_NUM_IN_BATCH > 1:
exemplar_set = ExemplarDataset(exemplar_sets, transform=transform_ori)
exemplar_loader = torch.utils.data.DataLoader(exemplar_set, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
exemplar_loader_iter = iter(exemplar_loader)
old_model.eval()
num_old_classes = old_model.fc.out_features
for epoch_index in range(1, epoch+1):
dist_loss = 0.0
sum_loss = 0
sum_dist_loss = 0
sum_cls_new_loss = 0
sum_cls_old_loss = 0
sum_cls_loss = 0
model.train()
old_model.eval()
old_model.freeze_weight()
for param_group in optimizer.param_groups:
print('learning rate: {:.4f}'. format(param_group['lr']))
for batch_idx, (x, x1, target) in enumerate(train_loader):
optimizer.zero_grad()
# Classification Loss: New task
x, target = x.cuda(), target.cuda()
targets = target-len(test_classes)+CLASS_NUM_IN_BATCH
# use mixup for task-1
if args.mixup:
inputs, targets_a, targets_b, lam = mixup_data(x, targets, args.mixup_alpha)
inputs, targets_a, targets_b = map(Variable, (inputs, targets_a, targets_b))
logits = model(inputs)
outputs = logits[:,-CLASS_NUM_IN_BATCH:]
cls_loss_new = mixup_criterion(criterion_ce, outputs, targets_a, targets_b, lam)
# use label smoothing for task-1
elif args.label_smoothing:
logits = model(x)
cls_loss_new = criterion_ce_smooth(logits[:,-CLASS_NUM_IN_BATCH:], targets, args.smoothing_alpha)
else:
logits = model(x)
cls_loss_new = criterion_ce(logits[:,-CLASS_NUM_IN_BATCH:], targets)
loss = args.w_cls*cls_loss_new
sum_cls_new_loss += cls_loss_new.item()
# use fixed lamda value or adaptive weighting
if args.const_lamda:
factor = args.lamda
elif use_sd:
factor = args.lamda_sd
else:
factor = ((len(test_classes)/CLASS_NUM_IN_BATCH)**(args.pow))*args.lamda
# while using self-distillation
if len(test_classes) // CLASS_NUM_IN_BATCH == 1 and use_sd:
if args.kd:
with torch.no_grad():
dist_target = old_model(x)
logits_dist = logits
T_sd = args.T_sd
dist_loss = nn.KLDivLoss()(F.log_softmax(logits_dist/T_sd, dim=1), F.softmax(dist_target/T_sd, dim=1)) * (T_sd*T_sd) # best model
sum_dist_loss += dist_loss.item()
loss += factor*args.w_kd*dist_loss
# Distillation : task-2 onwards
if len(test_classes) // CLASS_NUM_IN_BATCH > 1:
if args.kd:
with torch.no_grad():
dist_target = old_model(x)
logits_dist = logits[:, :-CLASS_NUM_IN_BATCH]
T = args.T
dist_loss_new = nn.KLDivLoss()(F.log_softmax(logits_dist/T, dim=1), F.softmax(dist_target/T, dim=1)) * (T*T)
try:
batch_ex = next(exemplar_loader_iter)
except:
exemplar_loader_iter = iter(exemplar_loader)
batch_ex = next(exemplar_loader_iter)
# Classification loss: exemplar classes loss
x_old, target_old = batch_ex
x_old , target_old = x_old.cuda(), target_old.cuda()
logits_old = model(x_old)
old_classes = len(test_classes) - CLASS_NUM_IN_BATCH
cls_loss_old = criterion_ce(logits_old, target_old)
loss += cls_loss_old
sum_cls_old_loss += cls_loss_old.item()
if args.kd:
# KD exemplar
with torch.no_grad():
dist_target_old = old_model(x_old)
logits_dist_old = logits_old[:, :-CLASS_NUM_IN_BATCH]
dist_loss_old = nn.KLDivLoss()(F.log_softmax(logits_dist_old/T, dim=1), F.softmax(dist_target_old/T, dim=1)) * (T*T) # best model
dist_loss = dist_loss_old + dist_loss_new
sum_dist_loss += dist_loss.item()
loss += factor*args.w_kd*dist_loss
sum_loss += loss.item()
loss.backward()
optimizer.step()
step += 1
if (batch_idx + 1) % checkPoint == 0 or (batch_idx + 1) == len(trainLoader):
print('==>>> epoch: {}, batch index: {}, step: {}, train loss: {:.3f}, dist_loss: {:3f}, cls_new_loss: {:.3f}, cls_old_loss: {:.3f}'.
format(epoch_index, batch_idx + 1, step, sum_loss/(batch_idx+1), sum_dist_loss/(batch_idx+1), sum_cls_new_loss/(batch_idx+1), sum_cls_old_loss/(batch_idx+1)))
scheduler.step()
def evaluate_net(model, transform, train_classes, test_classes):
model.eval()
train_set = cifar100(root=args.data_root,
train=False,
classes=train_classes,
download=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
total = 0.0
correct = 0.0
compute_means = True
for j, (_, images, labels) in enumerate(train_loader):
_, preds = torch.max(torch.softmax(model(images.cuda()), dim=1), dim=1, keepdim=False)
labels = [y.item() for y in labels]
np.asarray(labels)
total += preds.size(0)
correct += (preds.cpu().numpy() == labels).sum()
# Train Accuracy
print ('correct: ', correct, 'total: ', total)
print ('Train Accuracy : %.2f ,' % (100.0 * correct / total))
test_set = cifar100(root=args.data_root,
train=False,
classes=test_classes,
download=True,
transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
total = 0.0
correct = 0.0
for j, (_, images, labels) in enumerate(test_loader):
out = torch.softmax(model(images.cuda()), dim=1)
_, preds = torch.max(out, dim=1, keepdim=False)
labels = [y.item() for y in labels]
np.asarray(labels)
total += preds.size(0)
correct += (preds.cpu().numpy() == labels).sum()
# Test Accuracy
test_acc = 100.0*correct/total
print ('correct: ', correct, 'total: ', total)
print ('Test Accuracy : %.2f' % test_acc)
return test_acc
def icarl_reduce_exemplar_sets(m):
for y, P_y in enumerate(exemplar_sets):
exemplar_sets[y] = P_y[:m]
#Construct an exemplar set for image set
def icarl_construct_exemplar_set(model, images, m, transform):
model.eval()
# Compute and cache features for each example
features = []
with torch.no_grad():
for img in images:
x = Variable(transform(Image.fromarray(img))).cuda()
x=x.unsqueeze(0)
feat = model.forward(x, rd=True).data.cpu().numpy()
feat = feat / np.linalg.norm(feat) # Normalize
features.append(feat[0])
features = np.array(features)
class_mean = np.mean(features, axis=0)
class_mean = class_mean / np.linalg.norm(class_mean) # Normalize
exemplar_set = []
exemplar_features = [] # list of Variables of shape (feature_size,)
exemplar_dist = []
for k in range(int(m)):
S = np.sum(exemplar_features, axis=0)
phi = features
mu = class_mean
mu_p = 1.0/(k+1) * (phi + S)
mu_p = mu_p / np.linalg.norm(mu_p)
dist = np.sqrt(np.sum((mu - mu_p) ** 2, axis=1))
idx = np.random.randint(0, features.shape[0])
exemplar_dist.append(dist[idx])
exemplar_set.append(images[idx])
exemplar_features.append(features[idx])
features[idx, :] = 0.0
# random exemplar selection
exemplar_dist = np.array(exemplar_dist)
exemplar_set = np.array(exemplar_set)
ind = exemplar_dist.argsort()
exemplar_set = exemplar_set[ind]
exemplar_sets.append(np.array(exemplar_set))
print ('exemplar set shape: ', len(exemplar_set))
if __name__ == '__main__':
args = parse_option()
print (args)
if not os.path.exists(os.path.join(args.output_root, "checkpoints/cifar/")):
os.makedirs(os.path.join(args.output_root, "checkpoints/cifar/"))
# parameters
TOTAL_CLASS_NUM = 100
CLASS_NUM_IN_BATCH = args.start_classes
TOTAL_CLASS_BATCH_NUM = TOTAL_CLASS_NUM // CLASS_NUM_IN_BATCH
T = args.T
K = args.K
exemplar_sets = []
exemplar_means = []
compute_means = True
normalize = transforms.Normalize((0.5071, 0.4866, 0.4409), (0.2009, 0.1984, 0.2023))
# Heavy-augmentation
transform_aug = transforms.Compose([
transforms.ToTensor(),
Cutout(n_holes=1, length=16),
transforms.ToPILImage(),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4, padding_mode='reflect'),
CIFAR10Policy(),
transforms.ToTensor(),
normalize,
])
# default augmentation
transform_ori = transforms.Compose([
transforms.ToTensor(),
transforms.ToPILImage(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
# test-time augmentation
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
transform_train = TransformTwice(transform_ori, transform_ori)
class_index = [i for i in range(0, TOTAL_CLASS_NUM)]
np.random.seed(1993)
np.random.shuffle(class_index)
net = resnet32_cifar(num_classes=CLASS_NUM_IN_BATCH).cuda()
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print ('number of trainable parameters: ', params)
old_net = copy.deepcopy(net)
old_net.cuda()
cls_list = [0] + [a for a in range(args.start_classes, 100, args.new_classes)]
for i in cls_list:
if i == args.start_classes:
CLASS_NUM_IN_BATCH = args.new_classes
print("==> Current Class: ", class_index[i:i+CLASS_NUM_IN_BATCH])
print('==> Building model..')
if i == args.start_classes:
net.change_output_dim(new_dim=i+CLASS_NUM_IN_BATCH)
if i > args.start_classes:
net.change_output_dim(new_dim=i+CLASS_NUM_IN_BATCH, second_iter=True)
print("current net output dim:", net.get_output_dim())
# while using heavy augmentation
if args.aug:
if i==0:
transform_train = TransformTwice(transform_aug, transform_aug)
print ('.............augmentation.............')
else:
transform_train = TransformTwice(transform_ori, transform_ori)
train_set = cifar100(root=args.data_root,
train=True,
classes=class_index[i:i+CLASS_NUM_IN_BATCH],
download=True,
transform=transform_train)
trainLoader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4)
train_classes = class_index[i:i+CLASS_NUM_IN_BATCH]
test_classes = class_index[:i+CLASS_NUM_IN_BATCH]
print (train_classes)
print (test_classes)
m = K // (i+CLASS_NUM_IN_BATCH)
if i!=0:
icarl_reduce_exemplar_sets(m)
for y in range(i, i+CLASS_NUM_IN_BATCH):
print ("Constructing exemplar set for class-%d..." %(class_index[y]))
images = train_set.get_image_class(y)
icarl_construct_exemplar_set(net, images, m, transform_test)
print ("Done")
# train and save model
if args.resume and i==0:
net.load_state_dict(torch.load(args.resume_path))
net.train()
else:
net.train()
train(model=net, old_model=old_net, epoch=args.epochs, lr=args.lr, tempature=T, lamda=args.lamda, train_loader=trainLoader, use_sd=False, checkPoint=50)
# print weight norm: task:2 onwards
if i!=0:
weight_norm(net)
old_net = copy.deepcopy(net)
old_net.cuda()
# Do self-distillation
if i == 0 and not args.resume:
for sd in range(args.num_sd):
train(model=net, old_model=old_net, epoch=args.epochs_sd, lr=args.lr_sd, tempature=T, lamda=args.lamda,train_loader=trainLoader, use_sd=True, checkPoint=50)
old_net = copy.deepcopy(net)
old_net.cuda()
if args.save:
save_path = os.path.join(args.output_root, "checkpoints/cifar/", args.exp_name)
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save(net.state_dict(), os.path.join(save_path, 'checkpoint_' + str(i+CLASS_NUM_IN_BATCH) + '.pth'))
# Evaluation on training and testing set
transform_val = TransformTwice(transform_test, transform_test)
test_acc = evaluate_net(model=net, transform=transform_val, train_classes=class_index[i:i+CLASS_NUM_IN_BATCH], test_classes=class_index[:i+CLASS_NUM_IN_BATCH])
avg_acc.append(test_acc)
print (avg_acc)
print ('Avg accuracy: ', sum(avg_acc)/len(avg_acc))