-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain_mlmt.py
344 lines (263 loc) · 13 KB
/
train_mlmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import argparse
import os
import math
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import data.dataset_processing as data
from data.dataset_processing import TransformTwice, GaussianBlur, update_ema_variables
global_step = 0
TRAIN_DATA = 'train'
TEST_DATA = 'val'
TRAIN_IMG_FILE = 'train_img.txt'
TEST_IMG_FILE = 'val_img.txt'
TRAIN_LABEL_FILE = 'train_label.txt'
TEST_LABEL_FILE = 'val_label.txt'
m = nn.Sigmoid()
def get_arguments():
parser = argparse.ArgumentParser(description="MLMT Network Branch")
parser.add_argument("--lr", type=float, default=3e-2, help="learning rate")
parser.add_argument("--eta-min", type=float, default=1e-4, help="minimum learning rate for the scheduler")
parser.add_argument("--weight-decay", type=float, default=1e-5, help="optimizer: weight decay")
parser.add_argument("--workers", type=int, default=4, help="number of workers")
parser.add_argument("--num-classes", type=int, default=21, help="number of classes, For eg 21 in VOC")
parser.add_argument("--batch-size-lab", type=int, default=16, help="minibatch size of labeled training set")
parser.add_argument("--batch-size-unlab", type=int, default=80, help="minibatch size of unlabeled training set")
parser.add_argument("--batch-size-val", type=int, default=32, help="minibatch size of validation set")
parser.add_argument("--num-epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--burn-in-epochs", type=int, default=10, help="number of burn-in epochs")
parser.add_argument("--evaluation-epochs", type=int, default=5, help="evaluation epochs")
parser.add_argument('--exp-name', type=str, default='default', help="experiment name")
parser.add_argument('--cons-loss', type=str, default='cosine', help="consistency loss type: cosine")
parser.add_argument('--data-dir', type=str, default='./data/voc_dataset/', help="dataset directory path")
parser.add_argument('--pkl-file', type=str, default='./checkpoints/voc_semi_0_125/train_voc_split.pkl', help="indexes of files")
parser.add_argument("--w-cons", type=float, default=1.0, help="weightage consistency loss term")
parser.add_argument("--ema-decay", type=float, default=0.999, help="decay rate of exponential moving average")
parser.add_argument("--labeled-ratio", type=float, default=0.125, help="percent of labeled samples")
parser.add_argument('--verbose', action='store_true', help='verbose')
return parser.parse_args()
args = get_arguments()
if args.verbose:
from utils.visualize import progress_bar
def main():
global global_step
train_loader_lab, train_loader_unlab, valloader = create_data_loaders()
print ('data loaders ready !!')
def create_model(ema=False):
model = models.resnet101(pretrained=True)
model.fc = nn.Linear(2048, args.num_classes)
model = torch.nn.DataParallel(model)
model.cuda()
cudnn.benchmark = True
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
model_mt = create_model(ema=True)
optimizer = torch.optim.SGD(model.parameters(),
args.lr,
momentum=0.9,
weight_decay=args.weight_decay,
nesterov=True)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=args.num_epochs,
eta_min=args.eta_min)
for epoch in range(args.num_epochs):
print ('Epoch#: ', epoch)
train(train_loader_lab, train_loader_unlab, model, model_mt, optimizer, epoch)
scheduler.step()
if args.evaluation_epochs and (epoch + 1) % args.evaluation_epochs == 0:
print ("Evaluating the primary model:")
validate(valloader, 'val', model, epoch + 1)
print ("Evaluating the MT model:")
validate(valloader, 'ema', model_mt, epoch + 1)
def create_data_loaders():
channel_stats = dict(mean=[.485, .456, .406],
std=[.229, .224, .225])
transform_train = transforms.Compose([
transforms.Resize(size=(320, 320), interpolation=2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**channel_stats)
])
transform_aug = transforms.Compose([
transforms.Resize(size=(320, 320), interpolation=2),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
transforms.RandomHorizontalFlip(),
GaussianBlur(),
transforms.ToTensor(),
transforms.Normalize(**channel_stats)
])
transform_test = transforms.Compose([
transforms.Resize(size=(320, 320), interpolation=2),
transforms.ToTensor(),
transforms.Normalize(**channel_stats)
])
transform_lab = TransformTwice(transform_train, transform_train)
transform_unlab = TransformTwice(transform_train, transform_aug)
print ('loading data ...')
dataset = data.DatasetProcessing(
args.data_dir, TRAIN_DATA, TRAIN_IMG_FILE, TRAIN_LABEL_FILE, transform_lab, train=True)
dataset_aug = data.DatasetProcessing(
args.data_dir, TRAIN_DATA, TRAIN_IMG_FILE, TRAIN_LABEL_FILE, transform_unlab, train=True)
labeled_idxs, unlabeled_idxs = data.split_idxs(args.pkl_file, args.labeled_ratio)
print ('number of labeled samples: ', len(labeled_idxs))
print ('number of unlabeled samples: ', len(unlabeled_idxs))
sampler_lab = SubsetRandomSampler(labeled_idxs)
sampler_unlab = SubsetRandomSampler(unlabeled_idxs)
trainloader_lab = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size_lab,
sampler=sampler_lab,
num_workers=args.workers,
pin_memory=True)
trainloader_unlab = torch.utils.data.DataLoader(dataset_aug,
batch_size=args.batch_size_unlab,
sampler=sampler_unlab,
num_workers=args.workers,
pin_memory=True)
dataset_test = data.DatasetProcessing(
args.data_dir, TEST_DATA, TEST_IMG_FILE, TEST_LABEL_FILE, transform_test, train=False)
valloader = torch.utils.data.DataLoader(
dataset_test,
batch_size=args.batch_size_val,
shuffle=False,
num_workers=2 * args.workers,
pin_memory=True,
drop_last=False)
return trainloader_lab, trainloader_unlab, valloader
def cosine_loss(p_logits, q_logits):
return torch.nn.CosineEmbeddingLoss()(q_logits, p_logits.detach(), torch.ones(p_logits.shape[0]).cuda())
def train(trainloader_lab, trainloader_unlab, model, model_mt, optimizer, epoch):
global global_step
loss_sum = 0.0
class_loss_sum = 0.0
cons_loss_sum = 0.0
avg_acc_sum = 0.0
avg_acc_sum_mt = 0.0
class_criterion = nn.BCELoss().cuda()
# switch to train mode
model.train()
model_mt.train()
trainloader_unlab_iter = iter(trainloader_unlab)
for batch_idx, ((inputs, _), target) in enumerate(trainloader_lab):
#target = target.squeeze(2).float()
inputs, target = inputs.cuda(), target.cuda()
model_out = m(model(inputs))
model_mt_out = m(model_mt(inputs))
class_loss = class_criterion(model_out, target)
try:
batch_unlab = next(trainloader_unlab_iter)
except:
trainloader_unlab_iter = iter(trainloader_unlab)
batch_unlab = next(trainloader_unlab_iter)
(inputs_unlab, inputs_unlab_aug), _ = batch_unlab
inputs_unlab, inputs_unlab_aug = inputs_unlab.cuda(), inputs_unlab_aug.cuda()
model_unlab_out_aug = model(inputs_unlab_aug)
with torch.no_grad():
model_mt_unlab_out = model_mt(inputs_unlab)
cons_loss = cosine_loss(model_mt_unlab_out, model_unlab_out_aug)
if epoch>args.burn_in_epochs:
w_cons = min(args.w_cons, (epoch-args.burn_in_epochs)*2/args.num_epochs)
else:
w_cons = 0.0
loss = class_loss + w_cons*cons_loss
class_loss_sum += class_loss.item()
cons_loss_sum += cons_loss.item()
loss_sum += loss.item()
avg_acc, acc_zeros, acc_ones, acc = accuracy(model_out, target)
avg_acc_mt, acc_zeros_mt, acc_ones_mt, acc_mt = accuracy(model_mt_out, target)
avg_acc_sum += avg_acc
avg_acc_sum_mt += avg_acc_mt
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
update_ema_variables(model, model_mt, args.ema_decay, global_step)
if args.verbose:
progress_bar(batch_idx, len(trainloader_lab), 'Loss: %.3f | Class Loss: %.3f | Cons Loss: %.3f | Avg Acc: %.3f | Avg Acc MT: %.3f '
% (loss_sum/(batch_idx+1), class_loss_sum/(batch_idx+1), cons_loss_sum/(batch_idx+1), avg_acc_sum/(batch_idx+1), avg_acc_sum_mt/(batch_idx+1)))
if not args.verbose:
print('Loss: ', loss_sum/(batch_idx+1), ' Class Loss: ', class_loss_sum/(batch_idx+1), ' Cons Loss: ', cons_loss_sum/(batch_idx+1), ' Avg Acc: ', avg_acc_sum/(batch_idx+1), ' Avg Acc MT: ', avg_acc_sum_mt/(batch_idx+1))
def validate(eval_loader, mode, model, epoch):
avg_acc_sum = 0.0
ones_acc_sum = 0.0
zeros_acc_sum = 0.0
if mode=='val':
filename_raw = 'output_val_raw_' + str(epoch) + '.txt'
filename_bin = 'output_val_bin_' + str(epoch) + '.txt'
if mode == 'ema':
filename_raw = 'output_ema_raw_' + str(epoch) + '.txt'
filename_bin = 'output_ema_bin_' + str(epoch) + '.txt'
mlmt_output_path = os.path.join('./mlmt_output', args.exp_name)
if not os.path.exists(mlmt_output_path):
os.makedirs(mlmt_output_path)
f_raw = open(os.path.join(mlmt_output_path, filename_raw), 'a')
f_bin = open(os.path.join(mlmt_output_path, filename_bin), 'a')
model.eval()
with torch.no_grad():
for batch_idx, (inputs, target) in enumerate(eval_loader):
inputs, target = inputs.cuda(), target.cuda()
# compute output
output = m(model(inputs))
if epoch%1 == 0:
output_raw = output.cpu().numpy()
output_raw = np.roll(output_raw, 1)
output_bin = (output_raw>0.5)*1
np.savetxt(f_raw, output_raw, fmt='%f')
np.savetxt(f_bin, output_bin, fmt='%d')
# measure accuracy and record loss
avg_acc, acc_zeros, acc_ones, acc = accuracy(output, target)
ones_acc_sum += acc_ones
zeros_acc_sum += acc_zeros
avg_acc_sum += avg_acc
if args.verbose:
progress_bar(batch_idx, len(eval_loader), '| Avg Acc: %.3f | Ones Acc: %.3f | Zeros Acc: %.3f |'
% (avg_acc_sum/(batch_idx+1), ones_acc_sum/(batch_idx+1), zeros_acc_sum/(batch_idx+1)))
if not args.verbose:
print(batch_idx, len(eval_loader), ' Avg Acc: ', avg_acc_sum/(batch_idx+1))
f_raw.close()
f_bin.close()
def accuracy(outputs, targets):
thres = torch.ones(targets.size(0), args.num_classes)*0.5
thres = thres.cuda()
cond = torch.ge(outputs, thres)
count_label_ones = 0
count_label_zeros = 0
correct_ones = 0
correct_zeros = 0
correct = 0
total = 0
for i in range(targets.size(0)):
for j in range(args.num_classes):
if targets[i][j]==0:
count_label_zeros +=1
if targets[i][j]==1:
count_label_ones +=1
targets = targets.type(torch.ByteTensor).cuda()
for i in range(targets.size(0)):
for j in range(args.num_classes):
if targets[i][j]==cond[i][j]:
correct +=1
if targets[i][j] == 0:
correct_zeros +=1
elif targets[i][j] ==1:
correct_ones +=1
total += targets.size(0)*args.num_classes
total_acc = (correct_zeros + correct_ones)*100.0/total
avg_acc = (correct_ones/count_label_ones + correct_zeros/count_label_zeros)*100.0/2.0
acc_zeros = (100.*correct_zeros/count_label_zeros)
acc_ones = (100.*correct_ones/count_label_ones)
return avg_acc, acc_zeros, acc_ones, total_acc
if __name__ == '__main__':
main()