Skip to content

Latest commit

 

History

History
 
 

deepfashion

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

DeepFashion

[DATASET]

MMFashion develops "fashion parsing and segmentation" module based on the dataset DeepFashion-Inshop. Its annotation follows COCO style. To use it, you need to first download the data. Note that we only use "img_highres" in this task. The file tree should be like this:

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── DeepFashion
│   │   ├── In-shop
│   │   ├── Anno
│   │   │   ├── segmentation
│   │   │   |   ├── DeepFashion_segmentation_train.json
│   │   │   |   ├── DeepFashion_segmentation_query.json
│   │   │   |   ├── DeepFashion_segmentation_gallery.json
│   │   │   ├── list_bbox_inshop.txt
│   │   │   ├── list_description_inshop.json
│   │   │   ├── list_item_inshop.txt
│   │   │   └── list_landmarks_inshop.txt
│   │   ├── Eval
│   │   │   └── list_eval_partition.txt
│   │   ├── Img
│   │   │   ├── img
│   │   │   │   ├──XXX.jpg
│   │   │   ├── img_highres
│   │   │   └── ├──XXX.jpg

After that you can train the Mask RCNN r50 on DeepFashion-In-shop dataset by launching training with the mask_rcnn_r50_fpn_1x.py config or creating your own config file.

@inproceedings{liuLQWTcvpr16DeepFashion,
   author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
   title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
   booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   month = {June},
   year = {2016}
}

Model Zoo

Backbone Model type Dataset bbox detection Average Precision segmentation Average Precision Config Download (Google)
ResNet50 Mask RCNN DeepFashion-In-shop 0.599 0.584 config model | log